Sustainable Business Development
Technologie 3: Data Science
Empfohlene Vorkenntnisse |
Technologie I und II |
||||||||||||||||||||
Lehrform | Vorlesung | ||||||||||||||||||||
Lernziele / Kompetenzen |
Students are familiar with the concepts of data science, machine learning, big data and artificial intelligence and their basic methods. After completing the module, students will be able to carry out data analysis from pre-processing the data to evaluating the results using machine learning or artificial intelligence methods. Students can explain their solutions and evaluate the results. Students can assess potential problems in all steps of data analysis and select suitable solutions. They are familiar with the theoretical principles and practical application of the methods. They can clearly differentiate between methods such as regression, classification, pattern recognition, machine learning and deep learning. Students are able to select, apply and, if necessary, adapt suitable methods for given problems. The main advantages and disadvantages of the methods and procedures are evaluated on a problem-specific basis. |
||||||||||||||||||||
Dauer | 1 | ||||||||||||||||||||
SWS | 4.0 | ||||||||||||||||||||
Aufwand |
|
||||||||||||||||||||
ECTS | 6.0 | ||||||||||||||||||||
Voraussetzungen für die Vergabe von LP |
Klausurarbeit, 90 Min.
|
||||||||||||||||||||
Modulverantwortlicher |
Prof. Dr. Manuel Lämmle |
||||||||||||||||||||
Empf. Semester | 3 | ||||||||||||||||||||
Haeufigkeit | jedes Jahr (WS) | ||||||||||||||||||||
Verwendbarkeit |
Masterstudiengang SBD |
||||||||||||||||||||
Veranstaltungen |
Data Engineering and Machine Learning
Big Data and Artificial Intelligence
|