| 
                            Veranstaltungen
                         | 
                        
                            
                                Process Control Engineering
  | Art | 
  Vorlesung | 
 
  | Nr. | 
  M+V2503 | 
 
  | SWS | 
  2.0 | 
 
  | Lerninhalt | 
  The course is structured as follows: 
- the automation pyramid
 
- norms and regulations
 
- the most relevant DCS systems
 
- sensors and actuators
 
- fieldbus systems
 
- controller and DCS levels
 
  | 
 
  | Literatur | 
  
- Schildt, H.-H.; Kastner, W.: Prozeßautomatisierung; Springer, 1998
 
- Polke, M. (ed.): Process Control Engineering; VCH Weinheim 1994
 
- Siemens: Manual of Siemens Simatic PCS 7, part 1 and 2
 
 
Available online: 
 | 
 
 
Modelling and Simulation
  | Art | 
  Vorlesung | 
 
  | Nr. | 
  M+V2531 | 
 
  | SWS | 
  2.0 | 
 
  | Lerninhalt | 
  The course is structured as follows: 
- Introduction to Berkeley Madonna as differential equation solver
 
- Short repetition on Enzyme kinetics and Bioreactor processes
 
- Formulation of mathematical models, e.g. for chemical reaction, enzyme kinetics or fermentation processes
 
- Implementation of mathematical models in Berkeley Madonna, simulation and interpretation of simulation results
 
- Definition of own modelling tasks, formulation of differential equation systems, implementation in Berkeley Madonna and description including source code
 
- Introduction to statistical experimental design, empirical modelling of experimental results, interpretation of statistical indicators, utilization of models for optimization
 
  | 
 
  | Literatur | 
  
- Dunn, I.J., Heinzle, E., Ingham, J. Prenosil, J.E., Biological Reaction Engineering – Dynamic Modelling Fundamentals with Simulation, 2003
 
- Berkeley Madonna Guidelines (https://berkeley-madonna.myshopify.com/pages/download)
 
- Shina, S., Industrial Design of Experiments, 2022
 
- Goos, P., Jones, B., Optimal Design of Experiments, 2011
 
  | 
 
 
Multiphase Flows
  | Art | 
  Vorlesung | 
 
  | Nr. | 
  M+V2533 | 
 
  | SWS | 
  2.0 | 
 
  | Lerninhalt | 
  The course is structured as follows: 
- Introduction and characteristics of multiphase flows
 
- Single particle motion
 
- Bubble / droplet dynamics
 
- Flow regimes
 
- Cavitation
 
- Modelling of multiphase flows, e.g., gas-liquid flows, gas-solid flows
 
- Examples and applications
 
  | 
 
  | Literatur | 
  
- Brennen, C. E.: Fundamentals of Multiphase Flows. Cambridge University Press, 2005
 
- Clift, R; Grace, J. R.; Weber, M. E.: Bubbles, Drops and Particles. Courier Corporation, 2013
 
- Crowe C.T.; Michaelides, E.; Schwarzkopf, J.D.: Multiphase Flow Handbook. Taylor and Francis, 2016
 
- Michaelides, E. E.; Sommerfeld M.; van Wachem B.: Multiphase Flows with Droplets and Particles. CRC Press, 2022
 
  | 
 
 
Water Processing + Lab
  | Art | 
  Vorlesung/Labor | 
 
  | Nr. | 
  M+V2532 | 
 
  | SWS | 
   | 
 
  | Lerninhalt | 
  The course is structured as follows: 
- the current worldwide situation of the resource water
 
- thermodynamic basics
 
- transport phenomena for mass and heat
 
- common technologies for seawater desalination
 
- two drinking water production techniques: diffusion and thermal way
 
- techniques of pervaporation and flash evaporation
 
- in addition, experiments in the laboratory
 
- a final presentation of the results
 
  | 
 
  | Literatur | 
  
- P. Stephan, K.Schaber, K. Stephan, F. Mayinger: Grundlagen und technische Anwendungen – Band 2, Mehrstoffsysteme, Springer Vieweg Verlag Berlin Heidelberg, 2017
 
- C. Judson King: Separation processes, second edition, Dover Publication Inc., 2013
 
- R. Byron Bird, Warren E. Stewart, Edwin N. Lightfood: Transport Phenomena, Revised second edition, Wiley-VCH, 2006
 
- Peter Stephan, Stephan Kabelac, Matthias Kind, Dieter Mewes, Karlsheiz Schaber, Thomas Wetzel: VDI-Wärmeatlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Springer Verlag Berlin Heidelberg, 2019
 
  | 
 
 
                            
                         |