Process Engineering

Der Studiengang vermittelt fortgeschrittene Kenntnisse in der chemischen und thermischen Verfahrenstechnik, der Biotechnologie oder der Lebenmitteltechnologie

Modulhandbuch

 Zurück 

Advanced Process Engineering

Empfohlene Vorkenntnisse

Good general knowledge in the various fields of process engineering, knowledge in mathematics (according to Engineering Bachelor’s degree), chemistry, analytics and in single phase fluid mechanics.

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

By the end of the module, students

  • are capable of identifying the process engineering key problems and questions, and of describing them to colleagues or to representatives of clients and ancillary companies.
  • broadened their knowledge and understanding of process engineering unit operations as well of special technologies such water processing.
  • understand the context of energy and raw material input, processes, production plants including process control equipment.
  • master practical skills to solve typical engineering problems in process engineering involving multiphase flows.
  • understand the fundamental principles of modelling and simulation, and the statistical experimental design.
  • can apply the concept to solve optimization tasks.
  • are able to present the results of the experimental work in a report which is structured as an international scientific paper.
Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120
Selbststudium / Gruppenarbeit: 120
Workload 240
ECTS 8.0
Voraussetzungen für die Vergabe von LP

Modelling and Simuation and Water Processing + Lab: term paper; weight 50%

Process Control Engineering and Multiphase Flows: written exam, 90 min.; weight 50%

 

 

 

Modulverantwortlicher

Professorin Dr.-Ing. Susanne Gleißle

Empf. Semester 1. Semester
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Master MPE

Veranstaltungen

Process Control Engineering

Art Vorlesung
Nr. M+V2503
SWS 2.0
Lerninhalt

The course is structured as follows:

  • the automation pyramid
  • norms and regulations
  • the most relevant DCS systems
  • sensors and actuators
  • fieldbus systems
  • controller and DCS levels
Literatur
  • Schildt, H.-H.; Kastner, W.: Prozeßautomatisierung; Springer, 1998
  • Polke, M. (ed.): Process Control Engineering; VCH Weinheim 1994
  • Siemens: Manual of Siemens Simatic PCS 7, part 1 and 2

Available online:

Modelling and Simulation

Art Vorlesung
Nr. M+V2531
SWS 2.0
Lerninhalt

The course is structured as follows:

  • Introduction to Berkeley Madonna as differential equation solver
  • Short repetition on Enzyme kinetics and Bioreactor processes
  • Formulation of mathematical models, e.g. for chemical reaction, enzyme kinetics or fermentation processes
  • Implementation of mathematical models in Berkeley Madonna, simulation and interpretation of simulation results
  • Definition of own modelling tasks, formulation of differential equation systems, implementation in Berkeley Madonna and description including source code
  • Introduction to statistical experimental design, empirical modelling of experimental results, interpretation of statistical indicators, utilization of models for optimization
Literatur
  • Dunn, I.J., Heinzle, E., Ingham, J. Prenosil, J.E., Biological Reaction Engineering – Dynamic Modelling Fundamentals with Simulation, 2003
  • Berkeley Madonna Guidelines (https://berkeley-madonna.myshopify.com/pages/download)
  • Shina, S., Industrial Design of Experiments, 2022
  • Goos, P., Jones, B., Optimal Design of Experiments, 2011

Multiphase Flows

Art Vorlesung
Nr. M+V2533
SWS 2.0
Lerninhalt

The course is structured as follows:

  • Introduction and characteristics of multiphase flows
  • Single particle motion
  • Bubble / droplet dynamics
  • Flow regimes
  • Cavitation
  • Modelling of multiphase flows, e.g., gas-liquid flows, gas-solid flows
  • Examples and applications
Literatur
  • Brennen, C. E.: Fundamentals of Multiphase Flows. Cambridge University Press, 2005
  • Clift, R; Grace, J. R.; Weber, M. E.: Bubbles, Drops and Particles. Courier Corporation, 2013
  • Crowe C.T.; Michaelides, E.; Schwarzkopf, J.D.: Multiphase Flow Handbook. Taylor and Francis, 2016
  • Michaelides, E. E.; Sommerfeld M.; van Wachem B.: Multiphase Flows with Droplets and Particles. CRC Press, 2022

Water Processing + Lab

Art Vorlesung/Labor
Nr. M+V2532
SWS
Lerninhalt

The course is structured as follows:

  • the current worldwide situation of the resource water
  • thermodynamic basics
  • transport phenomena for mass and heat
  • common technologies for seawater desalination
  • two drinking water production techniques: diffusion and thermal way
  • techniques of pervaporation and flash evaporation
  • in addition, experiments in the laboratory
  • a final presentation of the results
Literatur
  • P. Stephan, K.Schaber, K. Stephan, F. Mayinger: Grundlagen und technische Anwendungen – Band 2, Mehrstoffsysteme, Springer Vieweg Verlag Berlin Heidelberg, 2017
  • C. Judson King: Separation processes, second edition, Dover Publication Inc., 2013
  • R. Byron Bird, Warren E. Stewart, Edwin N. Lightfood: Transport Phenomena, Revised second edition, Wiley-VCH, 2006
  • Peter Stephan, Stephan Kabelac, Matthias Kind, Dieter Mewes, Karlsheiz Schaber, Thomas Wetzel: VDI-Wärmeatlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Springer Verlag Berlin Heidelberg, 2019
 Zurück