Medizintechnik

Die perfekte Kombination aus ingenieurtechnischen Inhalten und medizinischen Fragestellungen. Technik für den Menschen – Technik, die begeistert!

Modulhandbuch

 Zurück 

Werkstoffe und Konstruktion

Empfohlene Vorkenntnisse

Fachhochschulreife

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Den Studierenden soll im Rahmen der Veranstaltung vermittelt werden, wie Werkstoffe und Implantate im Hinblick auf ihre biologische und mechanische Eignung bewertet werden können.

Im werkstoffmechanischen Teil der Vorlesung (Dr. Jaeger) erwerben die Studierenden anhand ausgewählter Beispiele die Kompetenz, die mechanische Zuverlässigkeit von Implantaten zu beurteilen. Hierzu werden die relevanten mechanischen Materialkenngrößen eingeführt, deren experimentelle Ermittlung dargestellt und die mikromechanischen Grundlagen des Materialverhaltens erläutert. Um ein Verständnis für die mechanische Beurteilung von Implantaten zu erlangen, werden Elemente der technischen Mechanik und Festigkeitslehre anhand einfacher Beispiele (z.B. Biegebalken) vermittelt.

Im Teil der Vorlesung, der von der biologischen Eignung von Werkstoffen handelt (Dr. Kluger) werden zunächst zellbiologische Grundlagen behandelt. Die Studierenden sollen den Aufbau von Zellen wiedergeben sowie verschiedenen Zellquellen (Stammzellen, primäre Zellen und Zelllinien) und grundlegende Schritte der in vitro Züchtung benennen können. Darauf aufbauend lernen die Studierenden verschiedene Kontakte von Zellen zu anderen Zellen und insbesondere zu Materialien wie z.B. Implantate zuordnen. Hier sind eine kurze Zusammenfassung der verschiedenen Implantatmaterialien sowie deren Eigenschaften vorgesehen, wobei die Studierenden Vor- und Nachteile auflisten können. In den nun anschließenden anwendungsorientierten Teilen werden verschiedene Aspekte (unterschiedliche Definitionen, Gewebereaktionen etc.) der Biokompatibilität besprochen. Die Studierenden können diese wiedergeben. Zudem können sie unterschiedliche Methoden zur Bestimmung benennen und für verschiedene Fragestellungen die geeignete auswählen. Zudem findet eine sukzessive Erörterung und Diskussion bzgl. der Biokompatibilitätstestung im Labor sowie deren Grenzen und in vivo Testungen (Tierversuche und klinische Studien) statt, so dass die Studierenden abwägen können wann welche Testung sinnvoll ist. Abschließend werden die verschiedenen Medizinproduktklassen sowie Zulassungskriterien und -stellen kurz besprochen, die von den Studierenden wiedergegeben werden können.

Im CAD-Labor wird die praktische Anwendung von CAD-Systemen erlernt. Durch entsprechende Übungen an den Arbeitsstationen im CAD-Labor wird das Arbeiten mit CAD-Systemen deutlich gemacht. Die Vorlesung ist interdisziplinär ausgerichtet unter Berücksichtigung von Grundlagenwissen aus dem beanspruchungs-, fertigungs- und werkstoffgerechten Gestalten und Dimensionieren einfacher Maschinenelemente.

  • Die Studierenden erlernen den Umgang mit einem CAD-Arbeitsplatz, haben einen Überblick über Einsatzbereiche von CAD-Systemen und verstehen die Bedeutung von CAD-Systemen für den betrieblichen Informationsfluss.
  • Die Studierenden erwerben Grundkenntnisse über allgemeine Methoden und Arbeitstechniken zur 3D-Modellierung und Konstruktion von Bauteilen, Baugruppen, zur Definition von Normteilen sowie zur Ableitung von Fertigungszeichnungen mit 3D-CAD-Systemen.
  • Die Studierenden müssen nach Abschluss des Moduls in der Lage sein, selbstständig einfache Bauteile und Baugruppen mit einem CAD-System zu modellieren und zu visualisieren sowie daraus technische Zeichnungen zu generieren.

 

Dauer 2
SWS 6.0
Aufwand
Lehrveranstaltung 90h
Selbststudium / Gruppenarbeit: 90h
Workload 180h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K90 und konstruktiver Entwurf

Leistungspunkte Noten

6 CP

Modulverantwortlicher

Prof. Dr. Ing. Harald Hoppe

Empf. Semester 1-2
Haeufigkeit jedes Semester
Verwendbarkeit

MT-spezifisch

Veranstaltungen

Konstruktionselemente

Art Vorlesung
Nr. EMI508
SWS 2.0
Lerninhalt

In der Vorlesung Konstruktionselemente erlernen die Studierenden den Ablauf der Bewertung der mechanischen Zuverlässigkeit eines Implantats. Die hierfür nötigen Begriffe und experimentellen Methoden werden am Beispiel der Ermüdungsprüfung eines Implantats eingeführt:

  • Werkstoffe für „klassische“ Implantate und die Gewebezüchtung
  • Beispiele für Belastungsanalysen von Implantaten
  • Einführung mechanischer Kenngrößen (E-Modul, Dehngrenze, Festigkeit, Schlagzähigkeit, Härte und Ermüdungsfestigkeit) und deren experimentelle Bestimmung
  • Kurze Einführung in die technische Mechanik und Festigkeitslehre anhand der Biegung und eulerschen Knickung von Balken beliebiger Querschnittsfläche, Bestimmung der Biegespannung.
  • Mikrostrukturelle Grundlage der Elastizität, des Bruchversagens, der plastischen Verformung und des Ermüdungsverhaltens (exemplarisch an Metallen).
  • Fallbeispiele: Bewertung der Ermüdungsfestigkeit von Implantaten und biomedizinischen Materialien, Schadensanalysen.

 

Literatur

Mattheck, C., Warum alles kaputt geht. Forschungszentrum Karlsruhe GmbH, 2003

Assmann, B., Technische Mechanik, Band 1: Statik, München, Wien, Oldenbourg Verlag, 1999

Assmann, B., Selke P., Technische Mechanik, Band 2: Festigkeitslehre, München, Wien, Oldenbourg Verlag, 2006

Werkstoffe der Medizintechnik

Art Vorlesung
Nr. EMI507
SWS 2.0
Lerninhalt
  • Werkstoffkundliche Grundlagen, Aufbau der Materie und Kristallstrukturen
  • Aufbau mehrphasiger Werkstoffe
  • Mechanische Eigenschaften von Werkstoffen
  • Korrosion und Werkstoffschädigung
  • Zellen und Gewebe
  • Biokompatibilität und Biokompatibilitätsprüfung
  • Metallische Werkstoffe in der Medizintechnik
  • Polymere in der Medizintechnik
  • Keramik in der Medizintechnik

 

 

 

Literatur
  • H.-J. Bargel, G. Schulze, Werkstoffkunde, Springer, ISBN 978-3-642-17717-0 (eBook)
  • H.A. Wintermantel, Suk-Woo Ha, Medizintechnik, Life Science Engineering, Springer, e-ISBN: 978-3-540-93936-8
  • G. Lütjering, J.C. Williams, Titanium, Springer, ISBN 978-3-540-71397-5
  • M. Peters, C. Leyens, Titan und Titanlegierungen, ISBN 978-3-527-30539-1

 

Labor Konstruktion/CAD

Art Labor
Nr. EMI509
SWS 2.0
Lerninhalt
  • Einführung in die Arbeit mit dem parametrischen 3D-CAD-System Creo 2.0 und Systemgrundlagen: Funktionsstruktur und Aufbau von CAD-Systemen, Benutzeroberfläche, Ansichtsmanager, Modellinformationen
  • Basiskonstruktionselemente und Modellreferenzen: Koordinatensysteme,  Bezugsebenen und Achsen
  • Grundlagen zu Skizzieren und Skizziermethodik: Erzeugung , Bemaßung und Bedingungen von Skizzen
  • Bauteilmodellierung und -bearbeitung: Profil- und Rotationskörper, gezogene Profile , Rundungen und Fasen, Bohrungen und Gewinde, Erstellung von Mustern, Kopieren, Spiegeln von  Konstruktionselementen, Flächenmodellierung, Modellanpassungen, Einsatz von Normteilbibliotheken
  • Baugruppenmodellierung: Einbau, Austausch und Anpassung von Komponenten, Entwurf von Baugruppenstruktur, Skelettmodelle, Baugruppeninformation
  • Zeichnungsableitung aus dem 3D-Modell: Zeichnungseinstellungen, Ableitung normgerechter Zusammenbauzeichnung und Einzelteilzeichnungen, Erzeugung von Modellansichten, Bemaßung, Erstellung von Stücklisten.

 

Literatur

Köhler, P., Pro/ENGINEER Praktikum. Einführende und fortgeschrittene Arbeitstechniken der parametrischen 3D-Konstruktion mit Wildfire 5.0., 5. Auflage, Wiesbaden, Vieweg + Teubner Verlag, 2010

Wyndorps, P., 3D-Konstruktion mit Pro/ENGINEER Wildfire 5.0, 5. Auflage, Haan-Gruiten, Europa-Lehrmittel Verlag, 2010

CAD Schroer GmbH, Ingenieurbüro – CAD-Schulung

Clement, S., Kittel, K., Vajna S., Pro/ENGINEER Wildfire 3.0 für Fortgeschrittene – kurz und bündig, 1. Auflage, Wiesbaden, Friedr. Vieweg und Sohn Verlag, 2008

Spur, G., Krause, F.-L., Das virtuelle Produkt – Management der CAD-Technik, München, Hanser Verlag, 1997

VDI 2249, Informationsverarbeitung in der Produktentwicklung, ADBenutzungsfunktionen, VDI-RICHTLINIE, 2003

Anderl, R., Virtuelle Produktentwicklung A (CAD-Systeme und CAx-Prozessketten), Vorlesungsskript, Fachgebiet Datenverarbeitung in der Konstruktion, TU Darmstadt, 2010

Ovtcharova, J., Virtual Engineering I, Computer Aided Design, Vorlesungsskript, Uni. Karlsruhe, IMI, 2009

Ehrlenspiel, K., Integrierte Produktentwicklung, München, Wien, Hanser Verlag, 2009

 Zurück