Elektrotechnik/Informationstechnik

Mit EI die Top-Themen unserer Zeit wie Digitalisierung, Mobilität, Vernetzung oder die Energiewende mitgestalten!

Modulhandbuch

 Zurück 

Regelungstechnik 1

Empfohlene Vorkenntnisse

Modul Informatik 1

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Nach erfolgreichem Abschluss des Moduls können die Studierenden komplexe Mikrocontrolleranwendungen (Bare Metal) in Assembler und in C entwerfen, implementieren und testen. Die Studierenden können nach dem erfolgreichen Abschluss des Moduls verschiedene Peripherie über die Pins ansteuern und Daten von dieser Peripherie einlesen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60h
Selbststudium / Gruppenarbeit: 90h
Workload 150h
ECTS 4.0
Voraussetzungen für die Vergabe von LP

Modulklausur K90

Laborarbeit LA, Labor muss m. E. attestiert sein.

Modulverantwortlicher

Prof. Dr.-Ing. Daniel Fischer

Empf. Semester EI-03, EI-plus03
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Das Modul wird im zweiten Studienabschnitt in den Studiengängen MKA, MK-plus, EI, EI-plus, EI-3nat und AI angeboten

Veranstaltungen

Regelungstechnik 1

Art Vorlesung
Nr. EMI835
SWS 4.0
Lerninhalt

Die Vorlesung gibt eine Einführung in die Regelungstechnik und vermittelt die grundlegenden Konzepte zur Analyse von Regelkreisen und dem Entwurf von Reglern für zeitkontinuierliche, lineare Systeme mit einem Eingang und einem Ausgang (LTI-SISO-Systeme). Behandelt werden u.a. folgende Inhalte:

Einführung in die Regelungstechnik

  • Anwendungen   
  • Definition: System, Steuerung, Regelung, Blockschaltbild, statisches System, dynamisches System, Stabilität
  • Steuerung und Regelung statischer Systeme
  • Festwertregelung, Folgeregelung, Vorsteuerung

Modellierung dynamischer Systeme

  • Beschreibung mechanischer, elektrischer und fluidischer Systeme mittels Differentialgleichungen
  • Definition von linearen, zeitinvarianten Systemen (LTI-Systeme)
  • Linearisierung nichtlinearer Differentialgleichungen
  • Simulation eines Systems mit MATLAB Simulink

Beschreibung und Verhalten von LTI-Systemen im Zeitbereich

  • Lösen der Eingangs-/Ausgangs-Differentialgleichung
  • Sprungantwort und Impulsantwort, Faltung
  • Erzwungene Antwort und Eigenbewegung
  • Transientes und stationäres Verhalten

Beschreibung und Verhalten von LTI-Systemen im Frequenzbereich

  • Anwendung der Laplace-Transformation,
  • Übertragungsfunktion, Pole und Nullstellen, Stabilität
  • Blockschaltbildumformung
  • Frequenzgang, Bode-Diagramm, Ortskurve

 Elementare Übertragungsglieder

  • P-Glied, I-Glied, PT1-Glied, D-Glied, DT1-Glied, PT2-Glied, Totzeit-Glied
  • PD-Glied, Bandsperre
  • Zusammengesetzte Systeme

Der Regelkreis

  • Der Standardregelkreis
  • Ziele eine Regelung, Reglerentwurfsaufgabe und Anforderungen
  • Stabilität von Regelkreisen
  • Stationäres Verhalten von Regelkreisen
  • Standard-Regler vom Typ PID
  • Reglerauslegung im Zeitbereich (Methoden von Ziegler-Nichols, Methode v. Chien, Hrones und Reswick)
  • Reglerauslegung im Frequenzbereich (vereinfachtes Betragsoptimum, Zeitkonstantenkompensation, Frequenzkennlinienverfahren, Auslegeung auf Dämpfung des geschlossenen Kreises)
Literatur
  • O. Föllinger, Regelungstechnik, 12. Auflage, Berlin, VDE Verlag, 2016
  • J. Lunze, Regelungstechnik I, 11. Auflage, Springer Vieweg, 2016
  • G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, Pearson, 8. Auflage, 2019
 Zurück