Sichere, autonome und KI-basierte Systeme
Sichere, autonome und KI-basierte Systeme
Die digitale Transformation und der Ausbau cyber-physischer Systeme erfordern zunehmend kollaborative Lösungen und Mensch-Maschine-Interaktion. Cognitive Computing erhöht zugleich die Autonomie der Systeme (zum Beispiel autonome Fahrzeuge und Flugobjekte). Damit verbunden sind auch die Herausforderungen der Kommunikation und Schnittstellengestaltung zwischen den Komponenten und Systemen, die Datenerfassung und -analyse mittels Künstlicher Intelligenz (u.a. Big Data, Maschinelles Lernen) sowie die IT-Sicherheit.
Geforscht wird hierzu vor allem am Affective and Cognitive Institute (ACI), am Institute for Machine Learning and Analytics (IMLA), am Institute for Unmanned Aerial Systems (IUAS) und am Institut für verlässliche Embedded Systems und Kommunikationselektronik (ivESK).
Titel | Quality Assurance of Machine Learning Applications |
Kurzname | Q-AMeLiA |
Kurzbeschreibung | Ziel des Verbundprojektes Q-AMeLiA ist es, KMU bei dem speziellen ML-Softwareentwicklungs-Lebenszyklus (ML-SDLC) und den dabei wichtigen Qualitätsindikatoren zu unterstützen. 5 KMU arbeiten mit 3 HAW zusammen, um passende Instrumente zur Bewertung der Daten-Qualität bezüglich repräsentativer Abdeckung des Merkmalsraums sowie zur Bewertung der im Lernprozess erreichten Qualität des erlernten KI-Modells zu erarbeiten. Dies sichert das Produktrisiko des Herstellers KI-basierter Produkte ab und gewährleistet dem Kunden eine quantifizierte Leistung der Produkte hinsichtlich der Entscheidungen der KI. |
Jahr der Einwerbung | 2020 |
Laufzeit Beginn | 01.10.2020 |
Laufzeit Ende | 30.09.2023 |
Projektleitung | Keuper, Janis, Prof. Dr. |
Fakultät | EMI |
Institut | IMLA |