Process Engineering

The MPE program equips students with advanced knowledge in chemical and thermal process engineering, biotechnology or food technology

Modul manual

 Zurück 

Renewable Energy Conversion

Prerequisite

Basic knowledge of thermal process engineering, fuel engineering, energy conversion, biotechnology, and plant design.

Teaching methods Lecture/Lab
Learning target / Competences

The students know the differences between incineration, pyrolysis, and gasification in theory and in practice. They are acquainted with the state of art in methods of fuel conversion, new generation hitech fuels, and biotechnological conversion processes. They know about the impact of the processes to the environment, and are capable of selecting the best suitable process for a given task and of its layout.

Duration 1
Hours per week 8.0
Overview
Classes 120
Individual / Group work: 120
Workload 240
ECTS 8.0
Requirements for awarding credit points

Thermochemical Conversion Processes 1+2 - written test 90 minutes; weight: 50%

Technical School Renewable Energy Conversion 1+2 - laboratory report, weight: 50%

Responsible person

Professorin Dr. sc. techn. Heide Biollaz

Recommended semester 1. Semester
Frequency Annually (ws)
Usability

Master MPE

Lectures

Thermochemical Conversion Processes I

Type Lecture
Nr. M+V926
Hours per week 2.0
Content
  • characterization of fuels for thermochemical conversion processes
  • pyrolysis, gasification, incineration: chemical processes, mass and energy balances, examples
Literature

  • Bridgwater, A.V.: Progress in thermochemical biomass conversion; Blackwell Sciences Ltd, Oxford 2001.
  • Scholz, Reinhard: Abfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzepte, Teubner 2001.
  • Demirbas, A.: Biofuels; Springer, London 2009.
  • Kaltschmitt, M.; Hartmann, H; Hofbauer, H. (ed.): Energie aus Biomasse - Grundlagen, Techniken und Verfahren, Springer, Heidelberg, 2nd ed. 2009.
  • Deublein, D; Steinhauser, A.: Biogas from Waste and Renewable Resources; Wiley-VCH, Weinheim, 2nd ed. 2010.
  • Thermochemical Conversion Processes II

    Type Lecture
    Nr. M+V927
    Hours per week 2.0
    Content
    • processing of intermediate products from pyrolysis and gasification (synthetic fuels, biodiesel, methanol, electricity)
    • conversion of toxic substances by thermal processes (gases, heavy metals, dioxins, and furans)
    • reduction of emissions of toxic substances
    • inertisation of residues from thermochemical processes (vitrification, solidification, recycling)
    Literature

  • Bridgwater, A.V.: Progress in thermochemical biomass conversion; Blackwell Sciences Ltd, Oxford 2001.
  • Scholz, Reinhard: Abfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzepte, Teubner 2001.
  • Demirbas, A.: Biofuels; Springer, London 2009.
  • Kaltschmitt, M.; Hartmann, H; Hofbauer, H. (ed.): Energie aus Biomasse - Grundlagen, Techniken und Verfahren, Springer, Heidelberg, 2nd ed. 2009.
  • Deublein, D; Steinhauser, A.: Biogas from Waste and Renewable Resources; Wiley-VCH, Weinheim, 2nd ed. 2010
  • Technical School Renewable Energy Conversion I

    Type Lab
    Nr. M+V929
    Hours per week 2.0
    Content
    • analysis of exhaust gases
    • calorific value measurement of solid, liquid and gaseous fuels
    • pyrolysis in a fixed bed reactor
    • gasification in a pit reactor
    • inertisation by vitrification and solidification
    • balancing a combustion process
    • methane generation during a fermentation process
    Literature
    • Kaltschmitt, M.; Hartmann, H; Hofbauer, H. (ed.): Energie aus Biomasse - Grundlagen, Techniken und Verfahren, Springer, Heidelberg, 2nd ed. 2009.
    • Deublein, D; Steinhauser, A.: Biogas from Waste and Renewable Resources; Wiley-VCH, Weinheim, 2nd ed. 2010.

    Technical School Renewable Energy Conversion II

    Type Lab
    Nr. M+V930
    Hours per week 2.0
    Content

    continuation from Technical School Renewable Energy Conversion I:

    • analysis of exhaust gases
    • calorific value measurement of solid, liquid and gaseous fuels
    • pyrolysis in a fixed bed reactor
    • gasification in a pit reactor
    • inertisation by vitrification and solidification
    • balancing a combustion process
    • methane generation during a fermentation process
    Literature
    • Kaltschmitt, M.; Hartmann, H; Hofbauer, H. (ed.): Energie aus Biomasse - Grundlagen, Techniken und Verfahren, Springer, Heidelberg, 2nd ed. 2009.
    • Deublein, D; Steinhauser, A.: Biogas from Waste and Renewable Resources; Wiley-VCH, Weinheim, 2nd ed. 2010.
     Zurück