Umwelttechnologie

Herstellungswege für moderne Produkte mit dem Fokus auf Nachhaltigkeit hinsichtlich Ressourcen, Energie und Recyclebarkeit entwickeln.

Modulhandbuch

 Zurück 

Umwelttechnologie (UT)

PO-Version [  20212  ]

Elektrotechnik

Empfohlene Vorkenntnisse

Gute Kenntnisse in Mathematik und Physik

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden sind in der Lage, grundlegende elektrotechnische Aufgabenstellungen zu lösen. Sie können Gleich- und Wechselstromkreise, einfache elektrische und magnetische Felder berechnen, haben das Verständnis von Kräften und Energien in diesen Feldern, können Leistungen in Gleich- und Wechselstromkreisen sowie in Drehstromsystemen verstehen und berechnen, besitzen ein grundlegendes Verständnis von der Wirkungsweise elektronischer Bauelemente und eine grundlegende Vorstellung von der messtechnischen Erfassung der elektrischen Grundgrößen. Die Studierenden können die elektrotechnischen Grundlagen auf andere Problemfelder übertragen und anwenden.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 60
Workload 120
ECTS 4.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Modulverantwortlicher

Professorin Dr.-Ing. Grit Köhler

Empf. Semester 2
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor BM, BT, MA, UT - Grundstudium

Veranstaltungen

Elektrotechnik I

Art Vorlesung
Nr. M+V0123
SWS 4.0
Lerninhalt
  • ELEKTROTECHNISCHE GRUNDBEGRIFFE
    elektrische Ladung, elektrischer Strom, elektrische Spannung, elektrischer Widerstand, elektrische Leistung, elektrische Energie
  • DER ELEKTRISCHE GLEICHSTROMKREIS
    Netzwerke aus linearen passiven und aktiven Zweipolen, Kirchhoffsche Gesetze, Stromkreisberechnung (Zweigstromanalyse, Maschenstromanalyse, Überlagerungsmethode, Zweipoltheorie), Leistungsumsatz im Stromkreis, Leistungsanpassung
  • DAS ELEKTRISCHE FELD
    Feldbegriff (Quellen- und Wirbelfelder, homogene und inhomogene Felder), elektrisches Feld im Nichtleiter (elektrostatisches Feld und zeitlich veränderliches elektrisches Feld), Verschiebungsfluss und Verschiebungsflussdichte, Verschiebungsstrom, elektrische Influenz, Faradayscher Käfig, Verschiebungs- und Orientierungspolarisation, Kapazität und Kondensatoren, Reihen- und Parallelschaltung von Kondensatoren, Energie und Kraftwirkungen im elektrischen Feld
  • DAS MAGNETISCHE FELD
    magnetischer Fluss, magnetische Induktion, magnetische Feldstärke, Materialeinfluss (insbesondere Ferromagnetismus), Durchflutungsgesetz, magnetische Kreise und ihre Berechnung, Analogiebeziehungen zwischen dem elektrischen Strömungsfeld und dem magnetischen Kreis, Analogiebeziehungen zwischen elektrischen und magnetischen Feldern, Ruhe- und Bewegungsinduktion (Lorentzkraft), elektromagnetische Felder, Selbst- und Gegeninduktivität, Induktivität und Spulen, Reihen- und Parallelschaltung von Spulen
  • DER WECHSELSTROMKREIS
    Erzeugung von Wechselspannungen, Wechselgrößen und deren Kennwerte, Leistungen im Wechselstromkreis
  • AUSGEWÄHLTE ANWENDUNGSBEISPIELE
Literatur
  • Aufgabensammlung zu den Grundlagen der Elektrotechnik, Gert Hagmann (Aula-Verlag Wiesbaden, 2000)
  • Grundlagen der Elektrotechnik zum Selbststudium, Dieter Nelles (VDE-Verlag Berlin Offenbach),     Band 1: Gleichstromkreise (2002), Band 2: Elektrische Felder (2003), Band 3: Magnetische Felder (2003), Band 4: Wechselstromkreise (2003)

Grundlagen Chemie

Empfohlene Vorkenntnisse

keine

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Studierenden sind in der Lage ausgehend vom Atombau den Zusammenhang zwischen der Einordnung eines Elementes in das Periodensystem der Elemente und dem jeweiligen chemischen Verhalten zu verstehen. Grundlegende stöchiometrische Berechnungen werden vermittelt. Die Studierenden können sicher mit Redoxreaktionen, Säure/Base-Reaktionen umgehen, erlangen aber auch das tiefere Verständnis und die Bedeutung des Massenwirkungsgesetzes als vorrangige Lernziele.

Dauer 1
SWS 5.0
Aufwand
Lehrveranstaltung 75
Selbststudium / Gruppenarbeit: 105
Workload 180
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Allgemeine und anorganische Chemie: Klausurarbeit, 90 Min.

Chemie - Einführungslabor: Laborarbeit

Klausurnote ist Modulnote.

Modulverantwortlicher

Professor Dr. rer. nat. Dragos Saracsan

Empf. Semester 1
Haeufigkeit jedes 2. Semester
Verwendbarkeit

Bachelor UT - Grundstudium

Veranstaltungen

Allgemeine und anorganische Chemie

Art Vorlesung
Nr. M+V0106
SWS 4.0
Lerninhalt
  • Grundbegriffe
  • Atomaufbau und Periodensystem der Elemente
  • Stöchiometrie
  • Chemisches Gleichgewicht und Massenwirkungsgesetz
  • Thermodynamik und Kinetik
  • Chemische Bindung (Ionen-, Metall-, kovalente und koordinative Bindung)
  • Chemische Reaktioen
  • Oxidation und Reduktion
  • Säuren, Basen, Salze, ph-werte
  • Elektrochemie
Literatur
  • Allgemeine und Anorganische Chemie, Riedel, E., de Gruyter, 11. Auflage, 2013
  • Allgemeine und Anorganische Binnewies, B. et al, Springer Spektrum, 3. Auflage, 2016
  • Chemie, C.Mortimer, U. Müller, Georg Thieme Verlag, Stuttgart, New York, 12. Auflage, 2015

Chemie - Einführungslabor

Art Labor
Nr. M+V0107
SWS 1.0
Lerninhalt
  • Kristallbildung
  • Umgang mit Volumenmessgeräten
  • Chemische Gleichgewicht
  • Löslichkeitsprodukte
  • Redoxreaktionen
  • Reaktionsgeschwindigkeit und homogee Katalyse
  • Amphoteres Verhalten von Aluminiumionen
  • Herstellen einer definierten Lösung durch Wiegen und Verdünnen
  • Komplexbindungen
  • Flammenfärbung
Literatur

Wird in der Veranstaltung bekannt gegeben.

Informatik

Empfohlene Vorkenntnisse

keine

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Studierenden verstehen die grundlegenden Begriffe der Datendarstellung und der Formulierung von Algorithmen in der Informatik, kennen einige wichtige Algorithmen und Datenstrukturen und können sie anwenden. Sie verstehen die grundlegenden Elemente einer Programmiersprache, können sie anwenden und beherrschen die Analyse und Erstellung einfacher strukturierter Programme.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 60
Workload 120
ECTS 4.0
Voraussetzungen für die Vergabe von LP

Laborarbeit

Modulverantwortlicher

Professor Dr. rer. nat. Thomas Eisele

Empf. Semester 2
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor UT - Grundstudium

Veranstaltungen

Informatik

Art Vorlesung/Labor
Nr. M+V0124
SWS 4.0
Lerninhalt
  • Einführung in die Informatik
  • Grundlagen des Programmierens
  • Übungen im Informatiklabor
    anhand einer Programmiersprache werden Programmiertechniken geübt
Literatur

wird in der Vorlesung bekanntgegeben

Mathematik I

Empfohlene Vorkenntnisse

Schulkenntnisse Mathematik, evtl. Brückenkurs

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden besitzen das Rüstzeug, wesentliche Wirkungszusammenhänge in den angewandten Wissenschaften nachvollziehen zu können und konstruktiv damit umgehen zu können. Die Studierenden beherrschen die mathematische Fachterminologie, das Instrumentarium und das grundsätzliche Herangehen an Problembehandlungen so, dass sie diese auf konkrete ingenieurmäßige Aufgaben übertragen und anwenden können. Die Studierenden sind in der Lage, Probleme aus der Praxis mit Hilfe des Vorlesungsstoffs selbstständig zu lösen.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90
Selbststudium / Gruppenarbeit: 120
Workload 210
ECTS 7.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Modulverantwortlicher

Professor Dr.-Ing. Christian Ziegler

Empf. Semester 1
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor BM, BT, MA, UT - Grundstudium

Veranstaltungen

Mathematik I

Art Vorlesung
Nr. M+V0100
SWS 6.0
Lerninhalt
  • Wiederholung der Grundlagen
    Zunächst wird das Basiswissen wiederholt (Mengen, Zahlen, Gleichungen und Ungleichungen, Binome, Rechnen mit Brüchen, Potenzen und Logarithmen), Grundlagen der Aussagenlogik
  • Vektoralgebra und analytische Geometrie
    Nach Einführung der Grundbegriffe und Grundlagen werden die Anwendungsmöglichkeiten besprochen und die Anwendung im 3-dimensionalen Raum geübt, der Zusammenhang mit linearen Gleichungssystemen wird dargestellt
  • Funktionen und Kurven
    Anhand wichtiger Funktionen (ganz- und gebrochenrationale Funktionen, Potenz- und Wurzelfunktionen, trigonometrische Funktionen, Exponential- und Logarithmusfunktion, Hyperbelfunktion) wird der Funktionsbegriff und die Darstellung von Funktionen geübt. Den Abschluss bilden Betrachtungen zur Stetigkeit und zum Grenzwert.
  • Differentialrechnung
    Über die Vertiefung des Grenzwertbegriffs wird die Differentialrechnung eingeführt. Die Ableitungsregeln werden an verschiedenen praktischen Beispielen geübt.
  • Folgen und Reihen
    Der Begriff der Folge wird eingeführt, es werden unendliche Reihen, Potenzreihen und die Taylorentwicklung besprochen.
  • Integralrechnung
    Abschluss bildet die Integralrechnung. Bestimmte und unbestimmte Integrale, Ingerationsregeln und -methoden werden besprochen.
Literatur
  • Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler Band 1, Vieweg, Papula, L. (Vieweg, 2000) 
  • Arens et al: Mathematik, (Spektrum Akademischer Verlag, 2011)

Mathematik II

Empfohlene Vorkenntnisse

Stoff des Moduls Mathematik I

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden besitzen das Rüstzeug, wesentliche Wirkungszusammenhänge in den angewandten Wissenschaften nachvollziehen zu können und konstruktiv damit umgehen können. Die Studierenden beherrschen die mathematische Fachterminologie, das Instrumentarium und das grundsätzliche Herangehen an Problembehandlungen so, dass sie diese auf konkrete ingenieurmäßige Aufgaben übertragen und anwenden können. Die Studierenden sind in der Lage, Probleme aus der Praxis mit Hilfe des Vorlesungsstoffs selbstständig zu lösen. Durch die bewusste Auswahl an Beispielen und Übungsaufgaben wird der Stoff des Moduls Mathematik I gefestigt.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 90
Workload 150
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Modulverantwortlicher

Professor Dr.-Ing. Christian Ziegler

Empf. Semester 2
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor BM, BT, MA, UT - Grundstudium

Veranstaltungen

Mathematik II

Art Vorlesung
Nr. M+V0101
SWS 4.0
Lerninhalt
  • Lineare Algebra
    Nach Einführung von Determinanten und Matrizen wird der Zusammenhang zu linearen Gleichungssystemen hergestellt. Eigenwerte und Eigenvektoren werden besprochen.
  • Komplexe Zahl
    Die komplexe Zahl und ihre Darstellungsmöglichkeiten werden diskutiert. Dabei werden die Rechenregeln eingeführt und Möglichkeit der Darstellung der komplexe Funktion einer reellen Veränderlichen als Ortskurve vertieft, ebenso die technischen Anwendungen.
  • Gewöhnliche Differentialgleichungen
    Die Bedeutung der Differentialgleichung und der technische Unterschied zwischen Anfangs- und Randwertproblem werden erläutert. Lösungsmethoden für Differentialgleichungen 1. Ordnung und 2. Ordnung mit konstanten Koeffizienten werden hergeleitet. Die Lösung von linearen Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten wird sowohl mit dem Exponentialansatz als auch über die Laplace-Transformation gezeigt.
  • Differential- und Integralrechnung für Funktionen von mehreren Variablen
    Den Abschluss bildet die Betrachtung von Funktionen mit mehreren Variablen sowie die Differentiation und Integration dieser Funktione. Substitutionsregeln für Funktionen mehrerer Variabler werden besprochen und auf Koordinatentransformationen angewendet.
Literatur
  • Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler Band 2, Vieweg, Papula, L. (Vieweg, 2000) 
  • Arens et al: Mathematik, (Spektrum Akademischer Verlag, 2011)

Nachhaltige Verfahren

Empfohlene Vorkenntnisse

keine

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Einführung in die Uni-Operations der Verfahrenstechnik

Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120
Selbststudium / Gruppenarbeit: 120
Workload 240
ECTS 8.0
Voraussetzungen für die Vergabe von LP

Toolbox: Bericht und Referat (Bericht muss m. E. attestiert sein.)

Nachhaltige Technologien: Hausarbeit

Modulnote entspricht Note der Hausarbeit

Modulverantwortlicher

Professorin Dr.-Ing. Susanne Mall-Gleißle

Empf. Semester 1
Haeufigkeit jedes 2. Semester
Verwendbarkeit

Bachelor UT - Grundstudium

Veranstaltungen

Toolbox

Art Vorlesung/Labor
Nr. M+V0109
SWS 4.0
Lerninhalt
  • Die Systematik der Verfahrenstechnik: Vom Rohstoff zum Produkt durch Stoffumwandlung
  • Grundlegende Naturgesetze, physikalische Größen und die Unit-Operations der Verfahrenstechnik
  • Die Maßstabsvergrößerung (das Scale-Up): Labor, Technikum, Produktion (dimensionslose Kennzahlen und Ähnlichkeitstheorie), Modell und Experiment
  • Apparate, Anlagen in Block-, Fließ- und Rohrleitungsschemata
  • Mess- und Regelungstechnik als Querschnittsdisziplin
  • Normen und Richtlinien

Verfahrenstechnik in Theorie und Experiment am Beispiel "Kaffee":

  • Trocknen und rösten
  • Mahlen und sieben
  • Filtrieren
  • Wärmeübertragen
  • Fördern und pumpen
  • Analysieren

Nachhaltige Technologien

Art Vorlesung
Nr. M+V0110
SWS 4.0
Lerninhalt
  • Erneuerbare Energien (Solarthermie, Photovoltaik, Wasser- und Windkraft, Geothermie)
  • Biomasse
  • Ökologie für Ingenieure
  • Batterie- und Brennstoffzelle
  • Moderne Energiespeicher
  • Kreislaufwirtschaft
  • Immissionsschutz
Literatur

Wird von den Dozent*innen jeweils bekannt gegeben.

Organische Chemie

Empfohlene Vorkenntnisse

Allgemeine und anorganische Chemie

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Nach Abschluss dieses Moduls können Studierende organische Strukturen und Reaktionen verstehen und beschreiben. Sie kennen die wichtigsten funktionellen Gruppen und können das Reaktionsverhalten auch von nicht explizit im Modul besprochenen Verbindungen voraussagen. Studierende sind vertraut mit Apparaten im organisch-chemischen Labor und kennen Methoden für die Herstellung und Charakterisierung organisch chemischer Präparate. Mit dem in diesem Modul erarbeiteten Verständnis für Polymerisationen befähig die Studierenden das Verhalten von Kunststoffen abzuschätzen. Darüber hinaus sind die Studierenden in der Lage auf Grund fundierter Kenntnisse im Bereich metallischer Werkstoffe, diese in Hinsicht auf ihre Eigenschaften und Verhalten auszuwählen.

Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120
Selbststudium / Gruppenarbeit: 150
Workload 270
ECTS 9.0
Voraussetzungen für die Vergabe von LP

Organische Chemie: Klausurarbeit, 90 Min.; Gewichtung der Modulnote: 2/3

Chemie - Labor: Laborarbeit

Werkstoffe: Klausurarbeit, 60 Min.; Gewichtung der Modulnote: 1/3

 

Modulverantwortlicher

Professor Dr. rer. nat. Fabian Eber

Empf. Semester 2
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor UT - Grundstudium

Veranstaltungen

Chemie - Labor

Art Labor
Nr. M+V0120
SWS 2.0
Lerninhalt
  • Wägeform & Gravimetrischer Faktor:
    Gravimetrische Bestimmung von Kalium
  • Ionenaustauschchromatographie:
    Trennung von Cobalt und Nickel und deren qualitativer Nachweis, quantitativer Nachweis von Nickel
  • Esterbildung:
    Reaktion, Destillation und Reinheitsprüfung mittels Refraktometrie
  • Reaktionen von Carbonylverbindungen:
    Synthese von Semicarbazon, Rekristallisation und Schmelzpunktbestimmung
  • Herstellung von Kupferchlorid
Literatur

Schwetlick, K.: Organikum: Organisch-chemisches Grundpraktikum, Wiley-VCH, 2015

Organische Chemie

Art Vorlesung
Nr. M+V0119
SWS 4.0
Lerninhalt
  • Organische Strukturen
    Darstellung organischer Verbindungen, funktionelle Gruppen, Oxidationszahlen, Atom- und Molekülorbitale
  • Organische Reaktionen
    Thermodynamik und Kinetik, gebogene Pfeile und Reaktionsmechanismen, Nukleophilie und Elektrophilie
  • Alkane, Alkene, Alkine
    Reaktionen der Kohlenwasserstoffe
  • Alkohole, Aldehyde & Ketone, Carbonsäuren Reaktionen der Carbonyl-Gruppe
  • Aromaten und delokalisierte pi-Systeme
    Reaktionen von Aromaten
  • Stereochemie
  • Polymere / Kunststoffe
  • Bioorganische Chemie
    chemische Synthese von Oligonukleotiden und Peptiden
Literatur
  • Vollhardt, K.P.C. & Schore, N.E.: Organische Chemie. Wiley VCH, 2020
  • Clayden, J. et al.: Organische Chemie, Springer Spektrum, 2013
  • Mortimer, C.E. & Müller, U.: Chemie: Das Basiswissen der Chemie, Thieme, 2019
  • McMurry, J. & Begley, T.: Organische Chemie der biologischen Stoffwechselwege, Spektrum Akademischer Verlag, 2006

Werkstoffe

Art Vorlesung
Nr. M+V0122
SWS 2.0
Lerninhalt

In der Vorlesung werden aufbauend auf den werkstoffkundlichen Grundlagen der Metalle die Änderungen der Eigenschaften durch z. B. Legierungselemente und Wärmebehandlungen vorwiegend am Beispiel Stahl entwickelt, beschrieben und erläutert. Neben den Grundlagen werden schwerpunktmäßig die beiden Werkstofffamilien der korrosionsbeständigen Stähle und der Polymere behandelt.

  • Grundlagen des kristallinen Aufbaus
  • Eigenschaften der Metalle (kristalliner Aufbau, Legierungsbildung,...)
  • Zweistoffsystem Eisen-Kohlenstoff (Stahl)
  • Grundlagen der Wärmebehandlung und des Einfluss der Legierungselemente auf die Eigenschaften von Stahls
  • Grundlagen, Eigenschaften und Anwendung von korrosionsbeständigen Stählen
  • Grundlagen, Eigenschaften und Anwendung von Polymere
Literatur

Physik

Empfohlene Vorkenntnisse

Gute Kenntnisse in Mathematik und Physik auf dem Niveau der Sekundarstufe. Der Mathematik-Brückenkurs wird dringend empfohlen!

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Ingenieurin/Der Ingenieur der Biomechanik benötigt die physikalischen Grundlagen für das Verständnis der im Studium folgenden Fachvorlesungen und insbesondere für alle technischen Fachgebiete in der Praxis.

Die Studierenden müssen in der Lage sein, grundlegende physikalische Aufgabenstellungen zu lösen. Dazu gehört die Anwendung von Erhaltungssätzen, Bewegungsgleichungen und Ergebnissen der modernen Physik.

In der Vorlesung Physik werden die physikalischen Zusammenhänge anhand konkreter Beispiele vorgestellt, entwickelt, beschrieben und erläutert und die Anwendung spezieller mathematischer Methoden geübt. Im Praktikum macht die weitgehend selbst aufgebaute Versuchsanordnung, die auch modernen Apparate zugrunde liegenden physikalischen Prinzipien, das Zusammenspiel der benutzen Komponenten und ihre Beeinflussbarkeit durch den /die Experimentator*in deutlich. In den Versuchen wird die Kunst des Messens und Beobachtens, die Gewinnung quantitativer Zusammenhänge, die Erarbeitung physikalischer Sachverhalte und besonders die kritische Wertung der gewonnenen Ergebnisse eingeübt. Ebenso muss sich der/die Experimentator*in mit den benutzten Apparaten und ihrer Funktion vertraut machen.

Die Experimente werden in kleinen, betreuten Gruppen bearbeitet. Die Schlüsselkompetenzen Kommunikationsfähigkeit und Teamfähigkeit sowie die Umsetzung theoretischer Grundlagen in praktische Anwendungen werden eingeübt.

Dauer 2
SWS 6.0
Aufwand
Lehrveranstaltung 90
Selbststudium / Gruppenarbeit: 120
Workload 210
ECTS 7.0
Voraussetzungen für die Vergabe von LP

Physik: Klausurarbeit, 90 Min.

Physik - Labor: Laborarbeit

Modulnote entspricht der Klausurnote.

Modulverantwortlicher

Professor Dr. rer. nat. Dragos Saracsan M.Sc.

Empf. Semester 1 und 2
Verwendbarkeit

Bachelor BT, MA, UT - Grundstudium

Veranstaltungen

Physik

Art Vorlesung
Nr. M+V0102
SWS 4.0
Lerninhalt
  • Physikalische Größen und mathematische Grundlagen
    Definitionen und Maßeinheiten; eine Auswahl mathematischer Verfahren in der Physik
  • Mechanik
    Kinematik und Dynamik: Grundgesetze der klassischen Mechanik;
    Mechanik des Massenpunktes;
    Arbeit, Energie und Leistung;
    elastischer und inelastischer Stoß;
    Mechanik des starren Körpers, Translation und Rotation;
  • Wärme
    spezifische Wärme; Wärmeausdehnung
  • Ausgewählte Anwendungsbeispiele
Literatur
  • Physik, D. C. Giancoli (Pearson Education, 2019)
  • Physik für Wissenschaftler und Ingenieure, P. A. Tipler (Springer Spektrum Verlag, 2019)
  • Physik für Ingenieure, Hering, Martin, Stohrer (Springer-Verlag Berlin Heidelberg, 2012)
  • Physik, U. Harten (Springer Vieweg, 2017)
  • Taschenbuch der Physik, H. Kuchling (Carl-Hanser-Verlag, 2014)
  • Taschenbuch der Physik, Stöcker (Verlag Harri Deutsch, 2018)

Physiklabor

Art Labor
Nr. M+V0103
SWS 2.0
Lerninhalt

Im Praktikum wird in einfachen Versuchen die Kunst des Messens und Beobachtens, die Gewinnung quantitativer Zusammenhänge, die Erarbeitung physikalischer Sachverhalte und besonders die kritische Wertung der gewonnenen Ergebnisse geübt und sich mit den benutzten Apparaten und ihrer Funktion vertraut gemacht.
Die Experimente werden in kleinen betreuten Gruppen bearbeitet. Am Ende eines jeden Versuchs steht die Anfertigung eines Laborberichts. Dieser beinhaltet neben den theoretischen Grundlagen des Versuchs eine geeignete Darstellung der wichtigsten Ergebnisse inklusive einer Abschätzung der Fehler im Rahmen einer Fehlerrechnung.
Für jeden Versuch ist ein Laborbericht zu erstellen.

Literatur
  • Physikalisches Praktikum, D. Geschke (Teubner, 2001)
  • Praktikum der Physik, W. Walcher (Teubner, 2000)
  • Physik, D. C. Giancoli (Pearson Education, 2009)
  • Physik für Wissenschaftler und Ingenieure, P. A. Tipler (Springer Spektrum Verlag, 2015)
  • Taschenbuch der Physik, H. Kuchling (Carl-Hanser-Verlag, 2014)

Technische Mechanik I

Empfohlene Vorkenntnisse

Mathematik- und Physikkenntnisse auf dem Niveau der Sekundarstufe II, insbesondere Vektorrechnung

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studiernden können:

  • mit den Begrifflichkeiten der Statik sicher umgehen
  • Linien-, Flächen und Volumenschwerpunkte bestimmen
  • mechanische Systeme einordnen und in analysierbare Teilsysteme zerlegen
  • die Lösbarkeit von Teilsystemen beurteilen
  • Lagerkräfte und Schnittlasten ermitteln
  • Reibungseinflüsse beurteilen und berücksichtigen
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 90
Workload 150
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Modulverantwortlicher

Professorin Dr.-Ing. Evgenia Sikorski

Empf. Semester 1
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor BM, BT, MA, UT - Grunddstudium

Veranstaltungen

Technische Mechanik I

Art Vorlesung
Nr. M+V0104
SWS 4.0
Lerninhalt
  • Einführung, Lehrsätze der Statik
  • Kraftvektoren, Vektorrechnung
  • Gleichgewicht am Punkt
  • Resultierende von Kräftesystemen
  • Gleichgewicht eines starren Körper
  • Fachwerke und Systeme starrer Körper
  • Schnittgrößen
  • Reibung
  • Schwerpunkte
Literatur
  • Hibbeler R. Technische Mechanik 1: Statik. München: Pearson Education. 2006
  • Gross D, Hauger W, Schnell W, et al. Technische Mechanik: Band 1: Statik. Berlin: Springer. 2004
  • Romberg O, Hinrichs N. Keine Panik vor Mechanik!. Wiesbaden: Vieweg. 2006

Technische Mechanik II

Empfohlene Vorkenntnisse

Technische Mechanik I, Mathematik I

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden können:

  • Zug/Druck-, Biege- und Schubspannungen in mechanischen Strukturen berechnen und daher kritische Stellen bezüglich des Versagens von mechanischen Strukturen erkennen
  • Spannungen und Verformungen aus Temperaturänderungen ermitteln
  • Zusammenhänge zwischen Spannungen und Dehnungen bei linear-elastischem Werkstoffverhalten herstellen, komplexe Belastungssituation als Überlagerung einfacher Belastungsfälle zusammensetzen
  • mehrachsige Spannungs- und Verzerrungszustände analysieren und entsprechende Festigkeitshypothesen auswählen und anwenden
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60
Selbststudium / Gruppenarbeit: 90
Workload 150
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Modulverantwortlicher

Professorin Dr.-Ing. Evgenia Sikorski

Empf. Semester 2
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor BM, BT, MA, UT - Grundstudium

Veranstaltungen

Technische Mechanik II

Art Vorlesung
Nr. M+V0105
SWS 4.0
Lerninhalt
  • Lineare Elastizitätstheorie (mit Wärmedehnung)
  • Hookesches Gesetz für Normal- und Schubspannungsbeanspruchung
  • Zug und Druck
  • Torsion (rotationssymmetrische Vollquerschnitte, geschlossene dünnwandige Hohlquerschnitte)
  • Biegung
  • Querkraftschub
  • Spannungstransformation, Mohrscher Spannungskreis, (Spannungshypothesen)
  • Knicken
  • Wöchentliche Übungen
Literatur
  • Technische Mechanik 2, Festigkeitslehre, Russell C. Hibbeler (Pearson, 2006)
  • Keine Panik vor Mechanik, Romberg, Oliver. Hinrichs, Nikolaus, Wiesbaden, 2008
  • Technische Mechanik 2: Elastostatik, Gross D, Hauger W, Schnell W (Springer, 2000)
  • Technische Mechanik Band 2: Festigkeitslehre, B. Assmann (Oldenbourg, 2003)
  • Technische Mechanik, Band 3: Festigkeitslehre, Holzmann G, Meyer H, Schumpich G (Teubner, 2000)
 Zurück