Mechatronik und Autonome Systeme

Modulhandbuch

 Zurück 

Mechatronik und autonome Systeme (MKA)

PO-Version [  20182  ]

Technische Mechanik II

Empfohlene Vorkenntnisse

Technische Mechanik I

Lehrform Vorlesung/Übung
Lernziele / Kompetenzen

Die Studierenden können

  • kritische Stellen bezüglich des Versagens von mechanischen Strukturen eingrenzen
  • Normal- und Schubspannungen in (ebenen) mechanischen Strukturen berechnen
  • Zusammenhänge zwischen Spannungen und Dehnungen herstellen und den Anwendungsbereich für linearelastisches Verhalten abstecken
  • die für verschiedene Belastungsfälle (Zug, Druck, Biegung, Torsion) begrenzenden Spannungen identifizieren
  • den Einfluss der Querschnittsform und des Kraftangriffs bei der Biegung beurteilen
  • statische und dynamische Belastungsfälle unterscheiden und die begrenzenden Materialeigenschaften benennen
  • komplexe Belastungssituation als Überlagerung einfacher Belastungsfälle zusammensetzen
  • Vergleichsspannungen bei komplexen Belastungssituationen ermitteln

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr. rer. nat. Michael Wülker

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Technische Mechanik II

Art Vorlesung
Nr. M+V606
SWS 4.0
Lerninhalt

Festigkeitsbetrachtungen erlauben es, Gefahrenpotentiale für das Versagen mechanischer Strukturen abzuschätzen, und bilden somit die Grundlage für die Dimensionierung von mechanischen Bauteilen und Strukturen wie Roboterstrukturen, Trägern, Wellen etc. Weiterhin ist für die Auslegung von Toleranzen von Interesse, wie sich mechanische Strukturen unter Einwirkung zulässiger Kräfte verformen und welche Spannungen bei Zwangsverformungen entstehen.


A) Im Rahmen der linearen Elastizitätstheorie werden der ein- und mehrachsige Normalspannungszustand sowie die Hookeschen Gesetze für Normal- und Schubspannungsbeanspruchung behandelt.

B) Für biegebeanspruchte Bauteile wird unter Berücksichtigung der Querschnittsform und Belastungseinleitung die Methode zur Berechnung der Biegespannungen erläutert (Biegespannungsfunktion, Flächenträgheitsmomente, Hauptachsen und Hauptträgheitsmomente, gerade und schiefe Biegung). Die Ermittlung der elastischen Verformung mittels Integrationsmethode, Satz von Castigliano und Superpositionsmethode stellt einen weiteren wesentlichen Bestandteil der Behandlung biegebeanspruchter Bauteile dar.

C) Die Ausführung zur Schubbeanspruchung beinhaltet unter anderem den Schubspannungsverlauf bei Querkraftschub sowie die Definition des Schubmittelpunktes.

D) Bei der Behandlung der Torsionsbeanspruchung wird auf die Berechnung der Torsionsschubspannung und die Verformung von Voll- und Hohlquerschnitten eingegangen.

E) Erläutert werden die wichtigsten Vergleichsspannungshypothesen zur Überlagerung von Normal- und Schubspannungen, die Begriffe der Zeit- und Dauerfestigkeit sowie der Kerbwirkung. Behandelt wird die Berechnung statisch überbestimmter Systeme nach verschiedenen Methoden.

F) Stabilitätsprobleme und deren analytische Behandlung werden am Beispiel der Knickung druckbeanspruchter Stäbe (elastische und plastische Knickung) dargelegt.

Literatur
  • Technische Mechanik. Band 2: Elastostatik, Hydrostatik Gross D., Hauger W., Schell W. Springer 2011
  • Technische Mechanik, Band 2: Festigkeitslehre, Hibbeler RC, Pearson Studium 2006
  • Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Hydrostatik, Gross D., Ehlers W., Schröder J., Springer 2011
  • Technische Mechanik, Band 2: Festigkeitslehre, Assmann B., Oldenbourg 2000
  • Taschenbuch für den Maschinenbau, Dubbel H.; Beitz W., Küttner K.-H. (Hrsg.), Springer 2011

Embedded Systems

Empfohlene Vorkenntnisse

Ingenieur-Informatik

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Der Studierenden beherrschen den Umgang mit Mikroprozessoren und Mikrocontrollern, verstehen den Einsatz von Assemblerprogrammierung, können Assembler in Hochsprachen einbinden und gehen strukturiert vor. Sie können eigene Embedded Systems aufbauen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90, Laborarbeit

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Daniel Fischer

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium
Bachelor EI, Hauptstudium
Bachelor EI-plus, Hauptstudium

Bachelor EI-3nat, Hauptstudium

Veranstaltungen

Embedded Systems

Art Vorlesung
Nr. EMI231
SWS 2.0
Lerninhalt

Befehlsstrukturen und –verarbeitung in Mikroprozessoren Adressierung der 80x86-Prozessoren Assembler-Source-Code erstellen und umsetzen in Objectcode und ausführbare Dateien Verbindung zum Betriebssystem durch Interrupts Zyklische und verzweigte Programme Flags Stackoperationen Logische und arithmetische Befehle Makros und Prozeduren Periphere Anbindung mit IN und OUT Textausgaben Adressierungsarten Aufbau von Mikrocontrollern Register, RAM, EEPROM, Flash Ports und Peripherie Systementwicklung Tools zum effektiven Arbeiten mit Embedded Systems

 

Literatur

Uhlenhoff, A., Mikrocontroller Werkzeugkasten HC12, Aachen, Shaker Verlag, 2002

Heiß, P., PC Assemblerkurs, Heise-Verlag, 1994

Labor Embedded Systems

Art Labor
Nr. EMI232
SWS 2.0
Lerninhalt
  • Vorbereitende Arbeiten
  • Einrichten einer IDE auf dem PC
  • Anwendung der in der VL erlernten Befehle
  • Ausführbare Dateien direkt erstellen, also ohne Übersetzungshilfen
  • Untersuchung der EXE-Dateien in Hexadezimaldarstellung
  • Echtzeitanwendungen
  • Textverarbeitung Embedded Systems
  • Vollständiger Aufbau eines eigenen Embedded Systems (das vom Studierenden käuflich erworben werden kann)
  • Aufbringen eines Bootloaders und eines Betriebssystems
  • Verbinden mit einem PC und Datenkommunikation einrichten
  • Analoge und digitale Schnittstellen in Programme einbinden
  • Zusatzhardware integrieren
  • Stand-alone-System aufbauen
  • Tools kennen lernen

 

Literatur

Laborumdrucke, Hochschule Offenburg, 2019

Schaltungstechnik

Empfohlene Vorkenntnisse

komplettes Grundstudium

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen
  • Begreifen des Verstärkers als Grundfunktion der analogen Signalverarbeitung.
  • Fähigkeit zur Verhaltensmodellierung mittels Ersatzschaltbildern und Signalflußbildern.
  • Beherrschen der Dimensionierung von Transistor- und Operationsverstärkerschaltungen bei gegebenen Anforderungen.
  • Begreifen der einsatzabhängigen Funktion, der Genauigkeits- und Geschwindigkeitsanforderungen von Analog-Digital- und Digital-Analog- Wandlern.
  • Fähigkeit zum Entwurf und zur Umformung und zur Minimisierung kombinatorischer Schaltungen.
  • Verständnis für das Zeitverhalten in digitalen Netzen und Fähigkeit zur Bestimmung des `kritischen Pfads`.
  • Fähigkeit zum Entwurf einfacher synchroner Schaltwerke wie Zähler und Zustandsautomaten mit systematischen Methoden.
  • Erlernen der Grundregeln des Entwurfs digitaler Schaltungen.
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K90, Laborarbeit

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Elke Mackensen

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Digitale Schaltungstechnik

Art Vorlesung
Nr. EMI316
SWS 2.0
Lerninhalt

- Grundlagen der Logik, logische Basisfunktionen, Normalformen.
- Kombinatorische Netze, Schaltnetze, statische Logik.
- Digitale Basisschaltungen, TTL, CMOS, innerer Aufbau, Störabstände.
- Minimisierung logischer Netze mit graphischen und rechnerischen Verfahren.
- Isomorphe und nicht- isomorphe Netze.
- Aritmetische kombinatorische Schaltungen (Addierer, Subtrahierer, Multiplizierer).
- Zeitverhalten, kritischer Pfad, Treiberfähigkeit und Belastung.
- Rückkopplung bei Schaltnetzen, Stabilität, Oszillationen.
- Speicherelemente, Flipflops, Register und ihre Behandlung und Anwendung.
- Grundelemente von Zustandsautomaten und ihr systematischer Entwurf.
- Zustandsdiagramm.
- Moore-Automat, Mealey- Automat, sequentielle Schaltwerke

 

Literatur

Jansen, D., Handbuch der Electronic Design Automation, München, Hanser Verlag, 2000

Analoge Schaltungstechnik

Art Vorlesung
Nr. EMI315
SWS 2.0
Lerninhalt

- Verstärkerentwurf: Ideale und reale gesteuerte Quellen zur Modellierung des Verstärkermechanismus`
- Rückgekoppelte Verstärker: Signalflussbild, Schaltung, mathematische Beschreibung
- Differenzverstärker, Operationsverstärker, Fehlerminderung durch Gegenkopplung, idealer - Operationsverstärker,
virtuell- Null- Verfahren, typische Kennwerte kommerzieller Operationsverstärker.
- Schaltungsbeispiele mit Operationsverstärkern: Verstärker mit unterschiedlichen Eigenschaften, Filter,
Messschaltungen; Eigenschaften, Grenzen und Dimensionierungen.
- Stromquellen- und Stromspiegelschaltungen.
- Analog/Digital- und Digital/Analogwandler: Prinzipieller Aufbau in Abhängigkeit von Genauigkeit und
Geschwindigkeit; Verstehen der Spezifikationen, Schnittstellen und Zahlenformate; Kosten- und leistungsgerechte
Bausteinauswahl.

 

Literatur

Tietze U., Schenk C., Gamm E., Halbleiter-Schaltungstechnik, 15. Auflage, Berlin, Heidelberg, Springer Vieweg, 2016

Labor Schaltungstechnik

Art Labor
Nr. EMI224
SWS 2.0
Lerninhalt

Das Schaltungstechnik Labor enthält Versuche sowohl für den Bereich der Analogen- wie auch Digitalen Schaltungstechnik. Der Student bearbeitet in Gruppen zu 2 Studenten 6 Versuche aus folgender Auswahl: Kombinatorische Schaltungen: Aufbau Inverter, Stromaufnahme, Übertragungsverhalten, Störabstand, 2-Bit Addierer, Durchlaufzeit, Logikserie CMOS Differenzverstärker: Simulation eines Differenzverstärkers mit dem Programm PSPICE, Gegentakt und Gleichtaktverstärkung, Frequenzgang, Stabilität, Überragungsverhalten. Operationsverstärker: Messung Übertragungskennlinie, Verstärkung, Eingangsoffsetspannung, Frequenzgang des realen Verstärkers für unterschiedliche Verstärkungen, Aufbau eines 2 poligen aktiven Filters mit dem Operationsverstärker und Messung des Übertragungsverhaltens. Programmierbare Logik: Entwurf der kombinatorischen Schaltung eines Vergleichers und der sequentiellen Schaltung eines kaskadierbaren Dezimalzählers bis `99` mit Enable, synchronem Reset und Carry. Programmierung und Funktionsnachweis auf GAL-Logikbausteinen. A/D-Wandler: Vermessung eines D/A-Wandlers auf Linearität und Restfehler. Aufbau eines A/D-Wandlers
nach dem Verfahren der `successive Approximation`. Basisversuche zum Abtasttheorem. Abtastung eines Signals. Phasenregelkreis: Aufbau eines PLL mit unterschiedlichen Phasendetektoren. Untersuchung des Verhaltens im Zeit- wie im Frequenzbereich. Folgeverhalten, Einrastverhalten, Stabilität. Dimensionierung der Regelparameter. Aufbau eines PLL als Synthesizer. SMD- Technologie: Aufbau einer kleinen Schaltung im SMD-Labor mit SMD-Bausteinen an einem Vakuum- Bestückungsplatz. Reflow- Lötvorgang, Qualitätssicherung unter dem Stereo-Mikroskop, Inbetriebnahme. Der Versuch vermittelt den kompletten SMD- Fertigungsvorgang für moderne Elektronik. FPGA- Entwurf eines Frequenzzählers: Auf einem Logikentwurfssystem für FPGAs (ALTERA-MAX II ) wird die Schaltung eines Frequenzzählers ergänzt und in wesentlichen Komponenten digital simuliert. Das Gesamtsystem wird in einen FPGA gebrannt und in Funktion demonstriert. ECL-Technik: Die Besonderheiten der Emitter Coupled Logic werden untersucht. Messtechnik mit Leitungsabschluss, Logikschaltungen, ECL- Zähler bis 150 MHz. Pegel und Störabstände. Impulsmesstechnik. Umgang mit einem hochwertigen Samplingoszillographen.

 

Literatur
  • Goßner, S., Grundlagen der Elektronik: Halbleiter, Bauelemente und Schaltungen, Shaker -Verlag, 2008
  • Zastrow, D., Elektronik, Springer-Verlag, 12. Auflage, 2014
  • Tietze U., Schenk C., Gamm E., Halbleiter-Schaltungstechnik, 15. Auflage, Berlin, Heidelberg, Springer Vieweg, 2016
  • Fricke, K.: Digitaltechnik. Wiesbaden: Vieweg+Teubner, 2009, 6. Auflage
  • Woitowitz, R.; Urbanski, K.; Gehrke, W.: Heidelberg: Springer Verlag, 2011
  • Biere, A.; Kröning, D.; Weissenbacher, G.; Wintersteiger, Ch. M.: Digitaltechnik – Eine praxisnahe Einführung. Heidelberg: Springer Verlag, 2008
  • Reichardt, J.: Lehrbuch Digitaltechnik. Eine Einführung mit VHDL. München: Oldenbourg Verlag, 2013
  • Wöstenkühler, G.: Grundlagen der Digitaltechnik, Elementare Komponenten, Funktionen und Steuerungen. München, Wien: Carl Hanser Verlag, 2012
  • Liebig, H.: Logischer Entwurf digitaler Systeme (4. Auflage). Berlin, Heidelberg, New York: Springer-Verlag, 2006 – ISBN-10 3-540-26026-9
  • Best, R.: Phase-Locked Loops: Design, Simulation and Applications, McGraw-Hill Education, 2009

Signale, Systeme und Regelkreise

Lehrform Vorlesung
Lernziele / Kompetenzen

Der Absolvent beherrscht die mathematische Beschreibung des Durchgangs von determinierten Signalen durch lineare, zeitinvariante Systeme im zeitkontinuierlichen als auch im zeitdiskreten Bereich und darauf aufbauend die Grundlagen der linearen Regelungstechnik als Basiswissen für alle Ingenieure.

Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 8.0
Modulverantwortlicher

Prof. Dr. Ing. Werner Reich

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Regelungstechnik I

Art Vorlesung
Nr. EMI228
SWS 4.0
Lerninhalt

Die Vorlesung gibt eine Einführung in die Regelungstechnik und vermittelt die grundlegenden Konzepte zur Analyse von Regelkreisen und dem Entwurf von Reglern für zeitkontinuierliche, lineare Systeme mit einem Eingang und einem Ausgang (SISO-Systeme). Behandelt werden u.a. folgende Inhalte:

  • Modellierung dynamischer Systeme
    Beschreibung mechatronischer Systeme mittels Differentialgleichungen; Linearisierung nichtlinearer Differentialgleichungen; Simulation eines Systems mittels MATLAB (System Control Toolbox) und MATLAB-Simulink
  • Mathematische Beschreibung und Verhalten von LTI-Systemen
    - Definition und Eigenschaften von LTI-SISO-Systeme
    - Beschreibung und Verhalten im Zeitbereich
      Lösen der Differentialgleichung, Sprungantwort, Impulsantwort, Faltung
    - Beschreibung und Verhalten im Frequenzbereich 
      Anwendung der Laplace-Transformation, Übertragungsfunktion, Frequenzgang, Bode-Diagramm, Ortskurve, Blockschaltbilder
    - grundlegende Übertragungsglieder (P-Glied, I-Glied, PT1, D-Glied, DT1-Glied, PT2-Glied, Totzeit-Glied)
    - Stabilität von Systemen
  • Der Regelkreis
    - Der Standardregelkreis
    - Ziele eine Regelung, Reglerentwurfsaufgabe und Anforderungen
    - Stabilität von Regelkreisen
    - stationäres Verhalten von Regelkreisen
    - Standard-Regler vom Typ PID
    - Reglerauslegung im Zeitbereich: (Methoden von Ziegler-Nichols, Methode v. Chien, Hrones und Reswick
    - Reglerauslegung im Frequenzbereich: vereinfachtes Betragsoptimum (Zeitkonstantenkompensation),  Frequenzkennlinienverfahren
Literatur

O. Föllinger, Regelungstechnik, 12. Auflage, Berlin, VDE Verlag, 2016

J. Lunze, Regelungstechnik I, 11. Auflage, Springer Vieweg, 2016

G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, Pearson, 7. Auflage, 2014

 

Signale und Systeme

Art Vorlesung
Nr. EMI227
SWS 4.0
Lerninhalt

1. Fourier-Transformation
- Orthogonale und orthonormale Funktionen, endliche und unendliche Fourier-Reihe
- Bestimmung der Fourier-Koeffizienten: Minimierung der Norm des Fehlersignals
- Gibbs'sches Phänomen; Amplituden- und Phasenspektrum
- Übergang zur Fourier-Transformation: Amplitudendichtespektrum
- Einführung der Distribution Dirac- Impuls
- Linearität, Zeitverschiebung, Ähnlichkeitssatz, Nullwertsätze, Parseval'sche Gleichung
- Faltung zweier Zeitfunktionen, graphische Veranschaulichung
- Systembeschreibung: Impulsantwort, Sprungantwort, Faltungsintegral, komplexer Frequenzgang

2. Laplace-Transformation
- Einführung in die Laplace-Transformation; Eigenschaften und Rechenregeln
- Rechnen im Bildbereich;  Hin- und Rücktransformation
- Anwendung der LP-Transformation auf gewöhnliche Differentialgleichungen mit konstanten Koeffizienten
- Rechnen mit Delta- und Sprungfunktionen
- Übertragungsfunktionen und Frequenzgänge linearer kontinuierlicher Übertragungssysteme

3. Z-Transformation
- Lineare Abtastsysteme;  Definition und Begriffe
- Rechenregeln der Z-Transformation; Hin- und Rücktransformationen
- Lösung der Differenzengleichungen

 

Literatur

Föllinger O., Laplace- und Fourier-Transformation, 10. Auflage, Berlin, Offenbach, VDE-Verlag, 2011

Werner, M., Signale und Systeme, Lehr- und Arbeitsbuch mit MATLAB-Übungen und Lösungen, 3. Auflage, Wiesbaden, Vieweg+Teubner, 2008

Doetsch G., Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 6. Auflage, München, Wien, Oldenbourg Verlag, 1989

 

Regelungstechnik

Lehrform Vorlesung
Lernziele / Kompetenzen
  • Kennenlernen der im Rahmen eines Projektlebenszyklus durchzuführenden Projektmanagementaktivitäten und deren Nutzen
  • Sammeln von Erfahrungen beim toolunterstützten Erstellen einer Projektplanung und deren Präsentation im Rahmen studentischer Projektteams
  • Sammeln von Erfahrungen beim Durchführen eines interdisziplinären Projekts nach den Methoden des Projektmanagements
  • Analyse eines konkreten mechatronischen Systems und Extraktion der systembestimmenden Eigenschaften
  • Einfache Regelung und Steuerung eines mechatronischen Systems
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr. Ing. Stephan Hensel

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Labor Schaltungstechnik

Art Labor
Nr. E+I224
SWS 2.0
Lerninhalt

Das Schaltungstechnik Labor enthält Versuche sowohl für den Bereich der Analogen- wie auch Digitalen Schaltungstechnik. Der Student bearbeitet in Gruppen zu 2 Studenten 6 Versuche aus folgender Auswahl: Kombinatorische Schaltungen: Aufbau Inverter, Stromaufnahme, Übertragungsverhalten, Störabstand, 2-Bit Addierer, Durchlaufzeit, Logikserie CMOS Differenzverstärker: Simulation eines Differenzverstärkers mit dem Programm PSPICE, Gegentakt und Gleichtaktverstärkung, Frequenzgang, Stabilität, Überragungsverhalten. Operationsverstärker: Messung Übertragungskennlinie, Verstärkung, Eingangsoffsetspannung, Frequenzgang des realen Verstärkers für unterschiedliche Verstärkungen, Aufbau eines 2 poligen aktiven Filters mit dem Operationsverstärker und Messung des Übertragungsverhaltens. Programmierbare Logik: Entwurf der kombinatorischen Schaltung eines Vergleichers und der sequentiellen Schaltung eines kaskadierbaren Dezimalzählers bis `99` mit Enable, synchronem Reset und Carry. Programmierung und Funktionsnachweis auf GAL-Logikbausteinen. A/D-Wandler: Vermessung eines D/A-Wandlers auf Linearität und Restfehler. Aufbau eines A/D-Wandlers
nach dem Verfahren der `successive Approximation`. Basisversuche zum Abtasttheorem. Abtastung eines Signals. Phasenregelkreis: Aufbau eines PLL mit unterschiedlichen Phasendetektoren. Untersuchung des Verhaltens im Zeit- wie im Frequenzbereich. Folgeverhalten, Einrastverhalten, Stabilität. Dimensionierung der Regelparameter. Aufbau eines PLL als Synthesizer. SMD- Technologie: Aufbau einer kleinen Schaltung im SMD-Labor mit SMD-Bausteinen an einem Vakuum- Bestückungsplatz. Reflow- Lötvorgang, Qualitätssicherung unter dem Stereo-Mikroskop, Inbetriebnahme. Der Versuch vermittelt den kompletten SMD- Fertigungsvorgang für moderne Elektronik. FPGA- Entwurf eines Frequenzzählers: Auf einem Logikentwurfssystem für FPGAs (ALTERA-MAX II ) wird die Schaltung eines Frequenzzählers ergänzt und in wesentlichen Komponenten digital simuliert. Das Gesamtsystem wird in einen FPGA gebrannt und in Funktion demonstriert. ECL-Technik: Die Besonderheiten der Emitter Coupled Logic werden untersucht. Messtechnik mit Leitungsabschluss, Logikschaltungen, ECL- Zähler bis 150 MHz. Pegel und Störabstände. Impulsmesstechnik. Umgang mit einem hochwertigen Samplingoszillographen.

 

Literatur

Regelungstechnik II

Art Vorlesung
Nr. EMI253
SWS 2.0
Lerninhalt
  • Analyse des Strecken- und Regelkreisverhaltens mit Hilfe der Pole und Nullstellen von Übertragungsfunktionen
  • Algebraische Stabilitätskriterien
  • Vereinfachung des Streckenmodells
  • Algebraische Reglerentwurfsverfahren für Standardregler
  • Strukturelle Maßnahmen wie Kaskadenregelung, Vorsteuerung und
  • Störgrößenaufschaltung zur Verbesserung des Regelkreisverhalten
Literatur

Föllinger, O., Regelungstechnik : Einführung in die Methoden und ihre Anwendung, 10. Auflage, Heidelberg, Hüthig Verlag, 2008

Lunze, J., Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, 9. Auflage, Heidelberg, Springer Verlag, 2013

Labor Regelungstechnik

Art Labor/Studio
Nr. EMI327
SWS 2.0
Lerninhalt
  • Frequenzgangmessung (Bode-Diagramm und Ortskurve; Schwingversuch)
  • Zweipunktregelung
  • Analoge und digitale Regler vom PID-Typ
  • Lösung von regelungstechnischen Problemen mit Modellbildung und Simulation (Matlab/Simulink)
  • Erzeugung von echtzeitfähigem Programm-Code aus einer Computersimulation; Rapid Prototyping
Literatur

Föllinger, O., Regelungstechnik : Einführung in die Methoden und ihre Anwendung, 10. Auflage, Heidelberg, Hüthig Verlag, 2008

Laborumdrucke, Hochschule Offenburg

Mechatronische Systeme I

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Teilnehmer können anhand der Übertragungsfunktion eines dynamischen Systems das damit zusammenhängende Einschwingverhalten herausarbeiten. Die sind außerdem in der Lage, einschleifige Regelkreise mit algebraischen Verfahren zu entwerfen und auf ihre Stabilität zu untersuchen. Darüber hinaus haben die Teilnehmer ein vielfältiges Repertoire an strukturellen Maßnahmen angehäuft, die über die Standardreglerstruktur hinausgehen und mit denen das Regelkreisverhalten weiter verbesserbar ist. Die Teilnehmer beherrschen auch Reglerentwurfsverfahren für Mehrgrößenregelkreise und für den Fall begrenzter Stellgrößen. Die erlernten Methoden können von den Teilnehmern auch für den Digitalrechner aufbereitet werden. Die erlernten Methoden werden im Labor durch praktische Beispiele gefestigt und verhelfen so den Teilnehmern zu einem besseren Urteilsvermögen über die Güte des Einschwingverhaltens eines Regelkreises.

Die Teilnehmer beherrschen Verfahren für die Modellbildung und Simulation technischer Prozesse und sammeln Erfahrungen über die Parametrierung und Inbetriebnahme von Regelkreisen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Simulation mechatronischer Systeme

Art Vorlesung
Nr. EMI350
SWS 2.0
Lerninhalt

Modellbildung

  • Systembegriff
  • Verfahren der Modellbildung
    • Theoretische Modellbildung
    • Allgemeine Systeme
    • Klassifizierung dynamischer Systeme

Vorgehensweise bei der Simulation

  • Numerische Integration
  • Simulationssysteme
    • Matlab/Simulink
    • Gazebo

Ausgewählte Beispiele zur Simulation mechatronischer Systeme

 

 

Literatur

Glöckler, Simulation mechatronischer Systeme, Wiesbaden, Springer, 2014

Scherf, Modellbildung und Simulation dynamischer Systeme: Eine Sammlung von Simulink-Beispielen, Oldenburg, 2009

Grundlagen mechatronischer Systeme

Art Vorlesung
Nr. EMI349
SWS 2.0
Lerninhalt
  • Begriffsbestimmung der Mechatronik
  • Entwicklungsprozess mechatronischer Systeme
    • V-Modell
    • Schnittstellenproblematik
    • Zuverlässigkeit mechatronischer Systeme
  • Bauteile mechatronischer Systeme:
    • Mechanisch
    • Elektrisch
    • Fluidisch / thermodynamisch
  • Modellbildung in der Mechatronik:
    • Theoretische Modellbildung
    • Parameteridentifikation
  • Kinematik mobiler Systeme
  • Sensoren mechatronischer Systeme
    • Eigenschaften von Sensorsystemen
    • Physikalische Effekte
    • Beschleunigungssensoren
    • Drehratensensoren
    • MEMS Sensorik
  • Prozessdatenverabreitung mechatronischer Systeme
    • Signal- und Datenverarbeitung
      • Kleinster Quadrate Schätzer
      • Kartierung
  • Ausgewählte Beispiele mechatronischer Systeme

 

Literatur

Roddeck, W., Einführung in die Mechatronik, Springer-Vieweg, 2012

Heimann, B., Mechatronik: Komponenten - Methoden - Beispiele, München, Wien, Hanser-Verlag, 2006

Siegwart, R., Introduction to Autonomous Mobile Robots, Cambridge, MIT Press, 2011

Mechatronische Systeme II

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden lernen die grundlegenden Eigenschaften und Komponenten mechatronischer Systeme kennen. Sie kennen das Vorgehen für die systematische und teamorientierte Entwicklung mechatronischer Systeme. Sie verstehen den Aufbau und die Interaktion von Aktoren, Sensoren und Elementen der Steuerung und Informationsverarbeitung.

Die Studierenden lernen die grundlegenden Komponenten aus Mechanik, Elektrotechnik und Informationstechnik kennen und können diese anhand von Fallbeispielen mathematisch beschreiben.

Sie erkennen die Zusammenhänge von digitalen Entwurfs- und Entwicklungsprozessen mit dem realen System. Die Studierenden beherrschen Verfahren zur Modellierung und der Simulation einfacher Systeme und kennen eine Auswahl der hierfür einzusetzenden Modellierungswerkzeuge.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 6.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Grundlagen autonomer Systeme

Art Vorlesung
Nr. EMI354
SWS 2.0
Lerninhalt

Die LV gliedert sich folgendermaßen:

Einführung

  • Geschichte Autonomer Systeme
  • Autonomiestufen

Wahrnehmen

  • Sensorik und einfache Filter
  • Geometrische Transformationen
  • Aufbau eines Modells 

Entscheiden

  • Entscheidungsarchitekturen
  • Algorithmen zur automatisierten
    Entscheidungsfindung

Handeln

  • Behaviors/Manöver
  • Behavior morphing
  • Lernen von Behaviors 

Anwendungsbeispiele

  • Fußballroboter
  • Autonomes Fahren

Was dürfen autonome Systeme?

 

Literatur

Autonome Systeme sind ein sehr aktuelles Gebiet der Forschung. Aktuelle Literatur findet sich vor allem in den Proceedings einschlägiger Konferenzen wie der Intelligent Autonomous Systems (IAS), dem RoboCup Symposium, oder der Autonomous Agents and Multi-Agent Systems (AAMAS) Konferenz. Fachbücher zu einzelnen Aspekten sind z.B.

  • Pratihar and Jain (2010) Intelligent Autonomous Systems - Foundations and Applications, Springer.
  • Wooldridge (2009) An Introduction to MultiAgent Systems, Wiley.

 

Labor Mechatronik und autonome Systeme

Art Labor
Nr. EMI321
SWS 4.0
Lerninhalt

Es soll eine möglichst alle Aspekte eines mechatronischen Systems umfassende Projektaufgabe in Gruppen bearbeitet werden. Dabei sollen die Projektmanagement-Methoden des Seminars Projektmanagement angewendet werden.
Die Studierenden werden mit einem möglichst konkreten und somit auch intuitiv erfassbaren mechatronischen Projekt konfrontiert. Es müssen die konkreten Gegebenheiten erfasst und analysiert werden und die Anforderungen an das Gesamtsystem zum Erreichen des gesetzten Ziels aufgestellt werden. Um das Gesamtsystem erfolgreich betreiben zu können, ist eine zunehmende Abstraktion von den konkreten Komponenten und deren Leistungsfähigkeit hin zu den für das System relevanten Eigenschaften erforderlich. Auf diesem Hintergrund soll dann eine geeignete Steuerung oder Regelung des Systems entworfen und umgesetzt werden.
Beispiel für Projektaufgaben
- Lösen einer Handhabungsaufgabe mit einem Industrieroboter
- Einsatz eines Bilderfassungssystems bei einer Handhabungsaufgabe
- Orientierung und Navigation mit einem bestehenden System (mobile Serviceroboter-Einheit, Roboterhund, ...)
- Entwurf eines systemfähigen Regelungs- und Steuerungskonzepts für bestehende mechatronische Komponenten
- Simulation von einfachen mechatronischen Gesamtsystemen
- Fußballroboter (auch mit LEGO)
- Programmierung einfacher Humanoidroboter bzw. von deren Elementen
- eigene Projektvorschläge der Studierenden

Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Elektrische Antriebe I

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Teilnehmer lernen die Funktionsweise der wichtigsten leistungselektronischen Stellglieder zum Betreiben elektrischer Maschinen sowie die grundlegenden Eigenschaften einiger bedeutender elektrischer Maschinen selbst kennen. Die spezifischen Eigenschaften der den leistungselektronischen Stellgliedern zugrundeliegenden Leistungshalbleiterbauelemente werden überblickt. Die Teilnehmer eignen sich außerdem die Fähigkeit zur Beurteilung, welche Applikationen mit welchen Antriebskomponenten auszurüsten sind und mit welchen Schwierigkeiten dabei zu rechnen ist, an.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Modulverantwortlicher

Prof. Dr.-Ing. habil. Uwe Nuß

Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Leistungselektronik

Art Vorlesung
Nr. EMI256
SWS 4.0
Lerninhalt
  • Aufgaben der Leistungselektronik
  • Bauelemente der Leistungselektronik
  • Wechselstrom- und Drehstromsteller
  • Netzgeführte Stromrichter
  • Selbstgeführte Stromrichter
  • Umrichter
  • Verfahren zur Ansteuerung von Stromrichtern
Literatur

Jäger, R., Stein, E., Leistungselektronik, VDE-Verlag, Berlin, Offenbach, 2011
Schröder, D., Leistungselektronische Schaltungen, 2. Auflage, Berlin, Heidelberg, Springer-Verlag, 2008
Specovius, J., Grundkurs Leistungselektronik, 2. Auflage, Wiesbaden, Vieweg Verlag, 2008

Grundlagen elektrischer Antriebe

Art Vorlesung
Nr. EMI257
SWS 2.0
Lerninhalt

- Grundsätzlicher Aufbau von Antriebssystemen:
Lasten, Getriebe, Motor, Umformer, Netz
- Grundlagen der Antriebstechnik:
Mechanische Größen, Energieflussbetrachtung, Drehmomenterzeugung, Verluste, Wirkungsgrad
Nennwerte von Elektromotoren, Drehfeld
- Gleichstrommaschinen:
Aufbau, Wirkungsweise, Grundgleichungen, Betriebsverhalten, DC-Motoren mit Permanentmagneterregung
DC-Reihenschlussmotor, Universalmotor
- Synchronmaschinen:
Aufbau, Wirkungsweise, Grundgleichungen, Betriebsverhalten, Einphasenbetrieb, Vergleich Permanent-/ Reluktanz-/Hysterese-Läufer
- Schrittmotoren:
Aufbau u. Schaltung, Stromversorgung und Ansteuerung, Betriebsverhalten, Anwendungen
- Elektronikmotoren:
Aufbau, Ansteuerung und Anwendung
- Linearmotoren für kleine Leistungen

Literatur

Jäger, R., Stein, E., Leistungselektronik, Berlin, Offenbach, VDE-Verlag, 2011
Specovius, J., Grundkurs Leistungselektronik, 8. Auflage, Wiesbaden, Vieweg Verlag, 2017
Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2015
Fischer, R., Elektrische Maschinen, 16. Auflage, München, Wien, Hanser Verlag, 2017

Technische Mechanik III

Empfohlene Vorkenntnisse

Technische Mechanik II

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden können

  • die Bewegung eines Punktes wie auch einer Scheibe in der Ebene bestimmen und analysieren.
  • sicher mit den Begriffen Arbeit, Energie, Leistung, Impuls, Drehimpuls umgehen und Zusammenhänge herstellen
  • die Bewegung eines Körpers infolge einwirkender Kräfte und Momente beschreiben
  • die aus der Drehbewegung eines Körpers resultierenden Kräfte und Momente berechnen
  • das Verhalten von Körpern nach einem Stoß beurteilen
  • einfache Kreiselbewegungen ermitteln
  • lineare Schwingungen von Punktmassen und Körpern in der Ebene analysieren
  • Schwingungsdifferentialgleichungen aufstellen und Eigenschwingungsformen und -frequenzen ermitteln
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min.

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Bernd Waltersberger

Empf. Semester 4
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor aBM, BM, ME, MA, MK - Hauptstudium

Veranstaltungen

Technische Mechanik III

Art Vorlesung
Nr. M+V607
SWS 4.0
Lerninhalt

Die Vorlesung beinhaltet Kinematik und Kinetik. In der Kinematik (Bewegungslehre) wird die Abhängigkeit zwischen den Größen Weg, Geschwindigkeit, Beschleunigung und Zeit bei der Bewegung von Massenpunkten und starren Körpern ohne Berücksichtigung der die Bewegung verursachenden Kräfte bzw. Momente untersucht.


Für ein- und mehrdimensionale Bewegungsvorgänge mit unterschiedlichem Beschleunigungs- bzw. Geschwindigkeitsverhalten werden die entsprechenden Gesetzmäßigkeiten hergeleitet.
Die allgemeine Bewegung starrer Körper wird anschaulich zurückgeführt auf translatorische und rotatorische Phasen; erörtert werden Begriffe wie momentaner Drehpol und Beschleunigungspol. Die Kinematik schließt ab mit der grafischen und analytischen Behandlung von Relativbewegungen.
In der Kinetik werden das d`Alembertsche Prinzip, der Arbeitssatz, der Energieerhaltungssatz sowie der Impuls- und Drehimpulssatz für Massenpunkte und starre Körper behandelt und zur Lösung unterschiedlicher Aufgabenstellungen (z.B. bei Wurf, Rotationsbewegung und Stoßvorgänge) herangezogen. Die Ausführungen zur Kinetik starrer Körper beinhalten weiterhin die Berechnung der Massenträgheitsmomente und die Gesetze der Kreiselbewegung bei geführter Achse.
Im dritten Komplex werden freie und erzwungene Schwingungen mit einem Freiheitsgrad (ungedämpft und gedämpft) sowie ungedämpfte Mehrmassensysteme (z.B. Ermittlung kritischer Drehzahlen) untersucht. Besonderes Gewicht wird auf die Ermittlung von Eigenschwingungsformen und -frequenzen gelegt.


Ausgewählte Anwendungsbeispiele und wöchentliche Übungen sind wichtiger Bestandteil der Lehrveranstaltung.

Literatur

Hibbeler, R.C., Technische Mechanik, Band 3: Dynamik, Pearson Studium 2006
Gross, D., Hauger, W., Schell, W., Schröder, J., Technische Mechanik, Band 3: Kinetik, Springer, 2008
Assmann, B., Technische Mechanik, Band 3: Kinematik und Kinetik, Oldenbourg, 2010
Dubbel, H., Beitz, W., Küttner, K.-H., Taschenbuch für den Maschinenbau, Springer, 2007

Maschinenkonstruktionslehre

Empfohlene Vorkenntnisse

Technische Mechanik I und II sowie Mathematik I

Lehrform Vorlesung/Übung
Lernziele / Kompetenzen

Die Wirkungsweise der behandelten Maschinenelemente soll verstanden werden und ihre Beanspruchungen sollen bekannt sein. Aufgrund dieses Wissens sollen die Maschinenelemente dimensioniert und günstig gestaltet werden können. Die zugehörigen Festigkeitsnachweise sollen unter Beachtung einschlägiger Normen durchgeführt und dokumentiert werden können. Der Einfluss der Bauteile auf die Dynamik eines Antriebsstranges muss abgeschätzt werden können. Zudem sind die Studierenden in der Lage, die an ausgewählten Maschinenelementen betrachteten Auslegungskonzepte prinzipiell auf andere Maschinenelemente zu übertragen.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 80 h
Selbststudium / Gruppenarbeit: 160 h
Workload 240 h
ECTS 7.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 90 Min., und Hausarbeit

Die Hausarbeit wird als freiwillige Prüfungsleistung benotet und kann bis zu 20 % auf die Klausurnote angerechnet werden.

Leistungspunkte Noten

7 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Bernd Waltersberger

Empf. Semester 4
Haeufigkeit jedes Jahr (SS)
Verwendbarkeit

Bachelor MK - Hauptstudium

Veranstaltungen

Maschinenelemente/Konstruktionslehre

Art Vorlesung/Übung
Nr. M+V608
SWS 4.0
Lerninhalt

A) Einführung in das Methodische Konsturieren (Ideenfindung, Konstruktionsprinzipien, Gestaltungsregeln, Klärung des Begriffs "Funktion" in der Konstruktionslehre)

B) Einführung in die Praktische Festigkeitslehre (Dauerschwingversuch, Wöhlerlinie, Dauerfestigkeitsschaubilder, Theorie des allgemeinen Verspannungszustands, Invarianten des Spannungstensors, VersagenshypothesenFestigkeitsnachweise nach DIN 743)

C) Betrachtung ausgewählter grundlegender Maschinenelememente: Z.B. Achsen, Wellen, Lager, Bewegungsschrauben, Federn. Dabei mit besonderem Blick auf Berechnungsansätze, die für weitere Maschinenelemente grundsätzliche Bedeutung habe (Dimensionierung, Funktionsnachweise, Festigkeitsnachweise)

  • Diskussion allgemeiner und übergreifender Regeln des Funktionsnachweises bei ausgewählten Maschinenelementen
  • Diskussion allgemeiner und übergreifender Regeln des Festigkeitsnachweises bei bei ausgewählten Maschinenelementen
  • Diskussion von abstrakten Modellierungsansätzen für ausgewählte Maschinenelemente für die Verwendung in Mechatronischen Simulationen

 

 

Literatur

Begleitunterlagen der Veranstaltung

Zur Ergänzung empfohlen:

Roloff, Matek, Maschinenelemente, 2003
Niemann, Winter, Höhn, Maschinenelemente, 2005
Labisch, Technisches Zeichnen, Springer Vieweg 2017
DIN 743

 

 

 

Maschinenelemente/Konstruktionslehre - Hausarbeit

Art Übung
Nr. M+V608
SWS 6.0
Lerninhalt

A) Einführung in das Methodische Konsturieren (Ideenfindung, Konstruktionsprinzipien, Gestaltungsregeln, Klärung des Begriffs "Funktion" in der Konstruktionslehre)

B) Einführung in die Praktische Festigkeitslehre (Dauerschwingversuch, Wöhlerlinie, Dauerfestigkeitsschaubilder, Theorie des allgemeinen Verspannungszustands, Invarianten des Spannungstensors, VersagenshypothesenFestigkeitsnachweise nach DIN 743)

C) Betrachtung ausgewählter grundlegender Maschinenelememente: Z.B. Achsen, Wellen, Lager, Bewegungsschrauben, Federn. Dabei mit besonderem Blick auf Berechnungsansätze, die für weitere Maschinenelemente grundsätzliche Bedeutung habe (Dimensionierung, Funktionsnachweise, Festigkeitsnachweise)

  • Diskussion allgemeiner und übergreifender Regeln des Funktionsnachweises bei ausgewählten Maschinenelementen
  • Diskussion allgemeiner und übergreifender Regeln des Festigkeitsnachweises bei bei ausgewählten Maschinenelementen
  • Diskussion von abstrakten Modellierungsansätzen für ausgewählte Maschinenelemente für die Verwendung in Mechatronischen Simulationen

 

 

 

 und Konstruktionsübung.

Literatur

Begleitunterlagen der Veranstaltung

Zur Ergänzung empfohlen:

Roloff, Matek, Maschinenelemente, 2003
Niemann, Winter, Höhn, Maschinenelemente, 2005
Labisch, Technisches Zeichnen, Springer Vieweg 2017
DIN 743

 

Objektorientierte Programmierung

Lehrform Praktikum
Lernziele / Kompetenzen

Der Teilnehmer verankert und erweitert das bereits Erlernte durch praktische Erfahrung, lernt die Bedeutung der Teamarbeit kennen, wendet Softskills an und erweitert sie.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 95 Präsenztage
Selbststudium / Gruppenarbeit: 720 h
Workload 720 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Daniel Fischer

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Objektorientierte Software-Entwicklung

Art Vorlesung
Nr. EMI233
SWS 2.0
Lerninhalt

Die Lehrveranstaltung beruht auf der Programmiersprache Java. Bei Interesse kann
aufbauend ein Wahlpflichtfach C++ belegt werden.

- Grundlagen
- Klassen und Arrays
- Vererbung
- Operator-Überladung und Typumwandlung
- Exceptions
- Collections
- Ein-/Ausgabe
- Swing
- Generics
- Entwurfsmuster

Literatur
  • Torsten T. Will: Das umfassende Handbuch zu Modern C++, Rheinwerk Computing, 2017
  • Ulrich Breymann: Der C++-Programmierer, Carl Hanser Verlag, 5. Auflage, 2017
  • Bjarne Stroustrup: Programming: Principle and Practice Using C++, Addison Wesley, 2. Auflage, 2014

Labor Objektorientierte Software-Entwicklung

Art Labor
Nr. EMI234
SWS 2.0
Lerninhalt

- Erstellung von Programmen mit - Klassen und Objekten - Vererbung und Polymorphie
- Operator-Überladung - Exceptions - Entwurfsmustern - Anwendung der Grundlagen
des Software-Engineerings - Objektorientierte Analyse - Objektorientierter Entwurf -
Dokumentation - Test

Betriebliche Praxis

Lehrform Vorlesung/Seminar
Lernziele / Kompetenzen

Dieses Modul hat ein klares übergeordnetes Lernziel:
Bereitstellung von theoretischem Wissen und Verknüpfung desselben mit dem Betriebspraktikum, um dieses als integralen Teil des Studiums in den Studienablauf einzubetten. Die Studierenden erwerben damit die Kompetenz, die betrieblichen Abläufen zugrunde liegenden Strukturen zu erkennen und vor diesem Hintergrund ihr eigenes Handeln im Betrieb reflektieren zu können.

Herzu gehören im einzelnen eine Vermittlung einer breiten betriebswirtschaftlichen Wissensbasis, um betriebliche Probleme in ihrem spezifisch ökonomischen Wesen zu begreifen und ein Kennen lernen der vielfältigen Beziehungen und Zusammenhänge zwischen den betrieblichen Teilbereichen.
Kommunikationsfähigkeit der Studierenden ist ein zweites Ziel, um überhaupt im betrieblichen Umfeld agieren zu können.

Dauer 2
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 150 h
Workload 240 h
ECTS 24.0
Voraussetzungen für die Vergabe von LP

Referat, Klausur K60 und entsprechend Wahlpflichtfachliste

Modulverantwortlicher

Prof. Dr.-Ing. Werner Reich

Haeufigkeit jedes Semester
Veranstaltungen

Betriebspraktikum

Art Praktikum
Nr. EMI322
SWS
Lerninhalt

Das Ziel des Betriebspraktikums ist, durch Tätigkeiten in einschlägigen Betrieben das gewählte Berufsfeld soweit kennen zu lernen, dass eine sinnvolle Schwerpunktbildung und Auswahl von Fächern nach eigener Neigung für die Studierenden möglich wird.

Literatur

Wird im Praktikumsbetrieb bekannt gegeben

Betriebliche Organisation

Empfohlene Vorkenntnisse

Frühestens im 5. Semester. Nach drei Semestern müssen mindestens 75 Creditpunkte oder zum Ende des dem Praktischen Studiensemester unmittelbar vorangehenden Semesters mindestens 90 Creditpunkte erbracht sein. Eine den Vorschriften entsprechende Praxisstelle muss zur Genehmigung vorgelegt werden.

Lehrform Praktikum
Lernziele / Kompetenzen

Die Teilnehmer*innen verankeren und erweiteren das bereits Erlernte durch praktische Erfahrung, lernen die Bedeutung der Teamarbeit kennen, wenden Softskills an und erweitern sie.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 95 Präsenztage
Selbststudium / Gruppenarbeit: 720 h
Workload 720 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Praxisberichte, Zeugnis der Praxisstelle

Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Empf. Semester 5
Haeufigkeit jedes Semester
Verwendbarkeit

MK-plus

Veranstaltungen

Seminar Projektmanagement

Art Seminar
Nr. E+I235
SWS 2.0
Lerninhalt

Im Rahmen des Seminars Projektmanagement wird eine praxisorientierte Einführung in die Methoden und Vorgehensweisen des modernen Projektmanagements gegeben. Das Seminar umfasst im Einzelnen folgende Inhaltspunkte:

- Projektmanagement: Definitionen, Richtlinien, Nutzen
Projektmanagement und Projekt Definitionen nach DIN;
Determinanten des Projektmanagement-Erfolgs; Das "Magische
Dreieck" des Projektmanagements.

- Projektorganisationsformen
Reine Projektorganisation, Projektkoordination, Matrix-
Organisation

- Projektlebenszyklus
- Projektdefinition
- Projektplanung : Kick-off, Erstellen eines
Projektstrukturplans (PSP); Verfahren der
Aufwandsschätzung; Termin- und Ablaufplanung (Gantt-Chart,
Meilensteinplan; Netzplantechnik), Ressourcen- und
Kostenplanung; Risikomanagement; Praxisanleitung zur
Projektplanung.
- Projektabwicklung/ -controlling : Projektabwicklung,
Qualitäts- und Config.-Management); Techniken zur Erfassung
zukunftbezogener IST-Daten; Datenauswertung (Soll-Ist
Vergleich; Earned-Value Analyse(EVA); Meilenstein Trend
Analyse (MTA)); Definieren von Steuerungsmaßnahmen.
- Projektabschluss : Produktabnahme; Projektabschlußbericht
mit Abschlussanalyse;Projektabschluss-Meeting (Kick-Out);
Feedback zum Projekt.

- Kosten des Projektmanagements

- Einführung in MS Projects - praktische Übung im Team

- Arbeitstechniken zur Unterstützung von Projektmanagement:
Kreativitätstechniken; Problemlösungstechniken;
Kommunikationstechniken; Verhalten und Steuern von
Besprechungen (Videopräsentation).

- Abschlussdiskussion - Feedback der Seminarteilnehmer

 

Literatur

Burghardt, M., Einführung in Projektmanagement, 4. Auflage, Erlangen, Publicis MCD Verlag, 2002

Haynes, M. E., Projektmanagement, 3. Auflage, Menlo Park, Calif., Crisp Learning Verlag, 2002

Wischnewski, E., Projektmanagement auf einen Blick, Braunschweig, Wiesbaden, Vieweg, 1993

Kommunikation und Interaktion in Unternehmen

Art Seminar
Nr. EMI323
SWS 2.0
Lerninhalt
  • Wahrnehmung als Grundlage der Kommunikation
  • Nonverbale und verbale Kommunikation, Ebenen der Interaktion
  • Selbstbild und Fremdbild: die Wirkung des eigenen Verhaltens kennenlernen
  • Einführung in die Transaktionsanalyse
  • Übungen zur Transaktionsanalyse: Analyse des individuellenGesprächsverhalten, erkennen und verstehen der Verhaltensweisen anderer
  • Charakteristisches Kommunikationsverhalten: Das Struktogramm
  • Konkrete Gesprächsstrategien: Ursachen und Wirkungen
  • Anwendung der Kommunikationsstrategien in schwierigen Gesprächssituationen
  • Erarbeiten und praktische Erprobung von Konfliktlösungsstrategien und Fragetechniken
  • Feedback auf das eigene Redeverhalten
  • Übungen für ein Assessment-Center
Literatur

Schulz von Thun, Miteinander reden, Band 1-3, Rowohlt, 1981

Betriebswirtschaftslehre

Art Vorlesung
Nr. EMI324
SWS 2.0
Lerninhalt
  • Grundlagen
  • Unternehmensführung/Management
  • Informationswirtschaft (Externes und internes Rechnungswesen)
  • Finanzierung und Investition
  • Personalwirtschaft
  • Materialwirtschaft
  • Produktionswirtschaft
  • Absatzwirtschaft/Marketing
Literatur

Vahs, D., Schäfer-Kunz, J., Einführung in die Betriebwirtschaftslehre, 5. Auflage, Stuttgart, Schäffer-Poeschel-Verlag, 2007

Elektrische Antriebe II

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Teilnehmer gewinnen die Fähigkeit zum gezielten Einsatz von Sensoren und geeigneten Signalverarbeitungsverfahren in der Messtechnik, Automatisierungstechnik und in der Regelungstechnik.

Die Studierenden können die Eigenschaften von Sensoren beurteilen, Fehlereinflüsse erkennen und geeignete Methoden für dei Messung und Kompensation auswählen.

Die Teilnehmer kennen die verschiedenen Messgrößen, physikalischen Messprinzipien und Anwendungsfelder und können geeignete Sensoren auswählen und auslegen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Industrielle Antriebe

Art Vorlesung
Nr. EMI258
SWS 2.0
Lerninhalt

- Lastkennlinien und Bewegungsgleichungen elektrischer Antriebe
- Sensoren für elektrische Antriebe
- Wicklungen von Drehfeldmaschinen
- Raumzeigertheorie
- Stationäres mathematisches Modell und Betriebskennlinien der Asynchronmaschine im Grunddrehzahl- und Feldschwächbereich
- Ausführungsformen und Regelungsstruktur stromrichtergespeister Antriebe mit Asynchronmaschinen
- Verfeinertes stationäres mathematisches Modell der permanentmagneterregten Synchronmaschine
- Regelungsstruktur stromrichtergespeister Antriebe mit permanentmagneterregten Synchronmaschinen

Literatur

Meyer, M., Elektrische Antriebstechnik, Bände 1 und 2., Berlin, Heidelberg, Springer-Verlag, 1985

Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2001

Fischer, R., Elektrische Maschinen, 16. Auflage, München, Wien, Hanser Verlag, 2013

Labor Elektrische Antriebe und Leistungselektronik

Art Labor
Nr. EMI259
SWS 2.0
Lerninhalt

Untersuchung des Betriebsverhaltens von Gleichstrom-, Asynchron-und permanentmagneterregten Synchronmaschinen sowie von Schrittmotoren
- Messtechnische Ermittlung von Maschinenparametern
- Ausmessung von Bauelementen der Leistungselektronik
- Betrieb elektrischer Maschinen mit Thyristor- und Transistorstellgliedern
- Inbetriebnahme von Regelkreisen bei elektrischen Antrieben

Literatur

Jäger, R., Stein, E., Leistungselektronik, Berlin, Offenbach, VDE-Verlag, 2011
Schröder, D., Leistungselektronische Schaltungen, 3. Auflage, Berlin, Heidelberg, Springer-Verlag, 2012
Specovius, J., Grundkurs Leistungselektronik, 8. Auflage, Wiesbaden, Vieweg Verlag, 2017
Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2015
Fischer, R., Elektrische Maschinen, 16. Auflage, München, Hanser Verlag, 2013
Meyer, M., Elektrische Antriebstechnik, Bände 1 und 2, Berlin, Heidelberg, Springer-Verlag, 1985

Sensorik

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Teilnehmer*innen gewinnen die Fähigkeit zum gezielten Einsatz von Sensoren und geeigneten Signalverarbeitungsverfahren in der Messtechnik, Automatisierungstechnik und in der Regelungstechnik.
Die Studierenden können die Eigenschaften von Sensoren beurteilen, Fehlereinflüsse erkennen und geeignete Methoden für dei Messung und Kompensation auswählen.
Die Teilnehmer*innen kennen die verschiedenen Messgrößen, physikalischen Messprinzipien und Anwendungsfelder und können geeignete Sensoren auswählen und auslegen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Labor Mess- und Sensortechnik

Art Labor/Studio
Nr. EMI261
SWS 2.0
Lerninhalt

Das Labor verknüpft die in der Vorlesung erarbeiteten Messmethoden und vorgestellten Sensoren mit sechs Versuchen

  • Interferometrische Längenmesstechnik
  • Korrelationsmesstechnik: Störunterdrückung, Laufzeitmessungen
  • Dehungsmessstreifen: Dehnung, Biegung, Torsion, Wägezelle
  • Rechnergestützte Messdatenerfassung und -verarbeitung: Induktive und potentiometrische Wegmessung
  • Wegmessung: Linear Variabler Differenzialtransformator (LVDT), phasenempfindliche Demodulation (Lock-In)
  • Druckmesstechnik: Piezoresistive Druckmessung, Temperaturkompensation, Füllstandsmessung, barometrische Messungen

 

Mess- und Sensortechnik

Art Vorlesung
Nr. EMI260
SWS 2.0
Lerninhalt

Definition und Eigenschaften eines Sensors: einfach, integriert, intelligent ("smart sensor")

Überblick von Messgrößen und möglichen Messprinzipien:

  • Drucksensoren: Piezoresistiv, kapazitiv, Temperaturkompensationmethoden
  • Längen- und Wegmessung:
    • Induktiv: Tauchanker, LVDT, Phasensynchrone Demodulation
    • Kapazitiv: Schichtdickenmessung
    • Optisch: Phasenbezogene Entfernungsmessung, Triangulation
    • Laufzeitverfahren: Ultraschallsensoren und RADAR
  • Kraftmessung:
    • Dehnungsmessstreifen und Auswerteschaltungen
  • Korrelationsmesstechnik: Kreuzkorrelation, Störunterdrückung, Laufzeitkorrelation

Messsignalverarbeitung in der Messkette:

  • Normalverteilte Messabweichungen
  • Kleinste Quadrate Schätzung
  • Sensordatenfusion mit dem gewichteten kleinste Quadrate Schätzer
Literatur

Tränkler, H., Sensortechnik Handbuch für Praxis und Wissenschaft, 2. Auflage, Berlin, Heidelberg, Springer, 2014 

Hering, E., Schönfelder G., Sensoren in Wissenschaft und Technik, Wiesbaden, Vieweg+Teubner, 2012 

Schrüfer, E., Elektrische Messtechnik, München, Hanser, 2014

 

Angewandte Informatik

Lehrform Vorlesung
Lernziele / Kompetenzen

- Methoden des Software-Engineerings im Umfeld von Embedded Systems einsetzen können
- Besonderheiten der Softwaretechnik für Embedded Systems kennen lernen
- Software unter besonderer Berücksichtigung von Qualität und Stabilität entwickeln können
- Verfahren modellbasierter Softwareentwicklung kennen and anwenden lernen
- Entwurfsverfahren für Echtzeitsysteme kennen lernen
- Software-Architekturen für Embedded Systems verstehen können
- Prinzipien des Web Engineerings verstehen
- Web Technologien gezielt in Projekten einsetzen können

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Axel Sikora

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Kommunikationsnetze

Art Vorlesung
Nr. EMI215
SWS 2.0
Lerninhalt

OSI- und TCP/IP-Referenzmodell

Sicherungsschicht

  • Rahmenbildung
  • Fehlerkorrektur und Fehlererkennung
  • Schiebefensterprotokolle
  • Mehrfachzugriffsprotokolle
  • Kopplung von Netzwerken

Vermittlungsschicht

  • Routing
  • Routing im Internet
  • IPv4 (inkl. Subnetting)
  • IPv6

Transportschicht

  • TCP
  • UDP

Anwendungsschicht

  • DNS
  • E-Mail (STMP, POP, IMAP etc.)
  • Web (HTTP, Web2.0, etc.)

Sicherheit

  • Geheimhaltung, Authentifizierung, Integrität
Literatur

Tanenbaum A. S., Computernetzwerke, 4. Auflage, München, Pearson Studium, 2003
Stevens Richard W., TCP/IP, Reading, Mass. [u.a.], Addison-Wesley, 2005
Sikora, A., Technische Grundlagen der Rechnerkommunikation: Internet-Protokolle und Anwendungen, München, Wien, Hanser, 2003

SW-Engineering für Embedded Systems

Art Vorlesung
Nr. EMI214
SWS 2.0
Lerninhalt

- Phasen der Softwareentwicklung

- Abstraktion und Hierarchie

- Echtzeit & Zuverlässigkeit
--- Programmiertechniken
--- Speichermanagement
--- Echtzeitbetriebssysteme

- Software

- Entwicklungsprozesse
--- Sequentielle Vorgehensmodelle
--- Iterative Vorgehensmodelle

- Entwurf
--- Strukturierter und modulare Entwurf
--- Modellbasierter Entwurf

- Implementierung
--- Werkzeuge
--- Anforderungsanalyse
--- Software-Qualitätssicherung
--- Dokumentation

Literatur

Balzert, H., Lehrbuch der Software-Technik, Band 1, 3. Auflage, Heidelberg, Spektrum, 2009

Sommerville, I., Software Engineering, 9. Auflage, München, Pearson Studium, 2012                                                     

Berns K., Schürmann B., Trapp M., Eingebettete Systeme: Systemgrundlagen und Entwicklung eingebetteter Software, Wiesbaden, Vieweg+Teubner, 2010

Schellong H., Moderne C-Programmierung: Kompendium und Referenz, Heidelberg, Springer, 2005

Korff, A., Modellierung von eingebetteten Systemen mit UML und SysML, Heidelberg, Spektrum, 2008

Bussysteme und Schnittstellen

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden

  • lernen den Aufbau und die Funktionsweise von Bussystemen und Schnittstellen umfassend von der Schaltungsrealisierung bis zur Programmierung kennen.
  • sind somit in der Lage, auch Ihnen unbekannte Bussysteme und Schnittstellen zu verstehen und einzuordnen,
  • kennen die Eigenschaften der unterschiedlichen Bussysteme und Schnittstellen und sind in der Lage, für unterschiedliche Anwendungsfälle die jeweils passende Technologie auszuwählen,
  • sind in der Lage, sowohl Kommunikationstreiber für Bussysteme und Schnittstellen zu entwickeln als auch gegebene Lösungen in ihre Anwendungen zu integrieren.

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Axel Sikora

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Bussysteme und Schnittstellen

Art Vorlesung
Nr. EMI244
SWS 2.0
Lerninhalt

- Datenübertragung zwischen digitalen Baugruppen in Kanälen.
--- Differentielle und massebezogene Übertragung, bidirektionale Übertragung.
--- Codierung und Taktrückgewinnung, Datensicherung, Parity, Interleaving, Handshake
- Protokolle auf Schnittstellen und Bussystemen.
--- RS232 Schnittstelle als Beispiel für asynchrone Datenübertragung.
--- Physikalische und logische Adressierung, Blockübertragung, Packaging
--- Zugriff zum Medium, Arbitrierung, Collision Detection, Fehlermodellierung, Topologie.
- Adressierung und Vermittlungstechniken
- Moderne Bussysteme
--- als Gerätenetzwerke (USB)
--- als lokale Netzwerke (Ethernet)
--- für den industriellen Einsatz (CAN, Real-Time Ethernet, Feldbusse)
- Kurzstreckenfunksysteme
--- RFID
--- IEEE802.15.4 / ZigBee
--- Bluetooth
--- WLAN

Literatur

Dembrowski, K., Computerschnittstellen und Bussysteme, 2. Auflage, Heidelberg, Hüthig Verlag, 2001

Zimmermann, W., Schmidgall R., Bussysteme in der Fahrzeugtechnik, 4. Auflage, Wiesbaden, Vieweg+Teubner, 2010

Klasen, F., Oestreich V., Volz M., Industrielle Kommunikation mit Feldbus und Ethernet, Berlin, Offenbach, VDE Verlag, 2010

Sikora, A., Wireless LAN, Addison-Wesley, 2001

Wittgruber, F., Digitale Schnittstellen und Bussysteme, 2. Auflage, Wiesbaden, Vieweg Verlag, 2002

 

Labor Bussysteme und Schnittstellen

Art Labor
Nr. EMI245
SWS 2.0
Lerninhalt

TBD - neu ab WS 2012/13

Industrielle Mechatronik

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden sollen

  • die Koordinatensysteme und ihre Umrechnung in Robotern benutzen können
  • Kräfte und Drehmomente in einem Roboter berechnen können
  • ein Gesamtmodell für einen Roboter aufstellen können
  • Kenntnisse über die Regelungs- und Steuerungskonzepte von Robotern haben und exemplarisch eine Regelung auslegen
  • die Komponenten von intelligenten Robotersystemen kennen
  • die Grundlagen und Konventionen der Pneumatik beherrschen
  • pneumatische Konstruktionselemente kennen und beurteilen können
  • beispielhaft pneumatische Systeme verstehen und auslegen können
  • die Nutzung und Modellierung von pneumatischen Komponenten in mechatronischen Systemen beurteilen können
Dauer 2
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 120 h
Workload 180 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Projektierung von Schaltschränken: Klausurarbeit, 60 Min.

Pneumatik: Klausurarbeit, 60 Min.

Die Modulnote setzt sich zusammen aus der Note der Klausur Projektierung von Schaltschränken (50 %) und der Note der Klausur Pneumatik (50 %).

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr. rer. nat. Michael Wülker

Empf. Semester 6 und 7
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK - Hauptstudium, Schwerpunkt Industrielle Mechatronik und Robotik

Veranstaltungen

Projektierung von Schaltanlagen

Art Vorlesung
Nr. E+I351
SWS 2.0

Projektierung von Schaltschränken

Art Vorlesung
Nr. EMI351
SWS 2.0
Lerninhalt
  • Grundlagen zur Europäischen Normen, Richtlinien und Gesetze
  • Relevante Normen, Richtlinien und Gesetze für die Projektierung von Schaltanlagen
  • Detailbetrachtung der EN60204-1 sowie die Abgrenzung zur EN61439-1
  • Praxisbeispiele zur konkreten Umsetzung der erlernten Vorgaben
  • Einführung in Elektro-CAD ePLAN P8
Literatur
  • Skript zur Vorlesung
  • Leitfaden Sicherer Maschine – In sechs Schritten zur sicheren Maschine, SICK AG 2017
  • Der normgerechte Schalt- und Steuerungsbau – Anwendung der DIN EN 61439, Rittal Gmbh& Co. KG, 2013
  • Das Schaltschrank-Expertenwissen, Rittal Gmbh & Co. KG, 2014
  • Die Schaltschrank- und Prozesskühlung, Rittal Gmbh & Co. KG, 2013

Hydraulik und Pneumatik

Art Vorlesung/Labor
Nr. M+V613
SWS 2.0

Vertiefung Elektrotechnik

Lehrform Vorlesung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Modulverantwortlicher

Prof. Dr. Ing. Stefan Hensel

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Systemintegration

Art Vorlesung
Nr. E+I352
SWS 2.0

Automatisierungssysteme

Lehrform Vorlesung
Lernziele / Kompetenzen

Nach erfolgreichem Abschluss des Moduls


• kennen die Studierenden den grundsätzlichen Aufbau und die Funktionsweise von Automatisierungssystemen sowie deren wichtigste Anwendungsgebiete.
• sind die Studierenden in der Lage grundsätzliche Arten industrieller Sensoren und Aktoren zu unterscheiden (stetig, nicht stetig, binär, analog)
• kennen die Studierenden die unterschiedlichen Arten von Steuerungen und sind in der Lage selbstständig Verknüpfungsfunktionen, Verknüpfungssteuerungen und Ablaufsteuerungen zu entwerfen und gemäß des Programmierstandards DIN EN 61131-3 zu implementieren.
• kenne die Studierenden Aufbau und Funktionsweise von Speicherprogrammierbaren Steuerungen und Prozessleitsystemen sowie deren Anwendungsgebiete und Realisierungsformen.
• verfügen die Studierenden über grundlegendes Wissen im Bereich intelligenter Punkt-zu-Punkt-Verbindungen (HART-Protokoll und IO-Link), klassischer industrieller Feldbusse (insbesondere AS-Interface und Profibus) sowie über ethernet-basierte Neztwerke und Feldbusse (Ethenet TCP/IP, EtherCAT, Profinet, SercosIII).
• kennen die Studierenden Kinematiken und Funktionsweise gängiger Industrieroboter und sind in der Lage den Aufbau von Robotersteuerungen zu beschreiben.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Modulverantwortlicher

Prof. Dr.-Ing. Jörg Fischer

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Labor Automatisierungssysteme

Art Labor
Nr. EMI252
SWS 2.0
Lerninhalt

In den Laborübungen lernen die Studenten am Beispiel dier SIMATIC S7-1500 und S7-300 wie speicherprogrammierbare Steuerungen bedient und programmiert werden. Als Beispielanwendungen kommen dabei wahlweise ein Fabrikmodell mit verschiedenen Bearbeitungsstationen, ein Festoportalroboter sowie eine Rundtakttischapplikation zum Einsatz. Es werden u.a. folgende Themen behandelt:

  • Entwurf und Implementierung von Verknüpfungsfunktionen, Verknüpfungssteuerungen und Ablaufsteuerungen .
  • die Programmiersprachen Funktionsbausteinsprache(FUP), Ablaufsprache (GRAPH7), Strukturierten Text (SCL) sowie in geringerem Umfang Kontaktplan (KOP) und Anweisungsliste (AWL)
  • Umgang mit Programmiersystemen anhand der Software TIA-Protal von Siemens
  • Entwurf und Programmierung graphischer Bedienoberflächen und Integration in ein Automatisierungssystem
  • Analogwertverarbeitung mit Automatisierungsrechnern
Literatur

 

Ausführliche Laboranleitungen zu den Versuchen

Automatisierungssysteme

Art Vorlesung
Nr. EMI251
SWS 4.0
Lerninhalt
  • Entwicklung der Automatisiserungtechnik
  • Produktionsprozesse
  • Aufgaben der Automatisierungstechnik
  • Automatisierungsstrukturen
  • Rechnersysteme der Automatisierungstechnik: SPS, PLS, PR, LON, IMC
  • Systeme der Fertigungsautomation: CNC, Roboter, Transportsysteme
  • Serielle Schnittstellen
  • Parallele Buss
  • Feldbusse Interbus-S, CAN, Profibus, ASI
  • Software MC Step5, Step7, IEC 1131-3, Echtzeitbetriebssysteme
Literatur

Berger, H., Automatisieren mit Step 7 in AWL und SCL, Erlangen, München, Publicis-MCD-Verlag, 1999

Schnell G., Wiedemann B., Bussysteme in der Automatisierungstechnik, 7. Auflage, Wiesbaden, Vieweg + Teubner, 2008

Langmann, R., Taschenbuch der Automatisierung, 2. Auflage, München, Fachbuchverlag Leipzig, 2010

Vertiefung Industrielle Mechatronik und Robotik

Lehrform Wissenschaftl. Arbeit/Sem
Dauer 1
SWS 22.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 25.0
Haeufigkeit jedes Semester

Fahrzeugmechatronik

Empfohlene Vorkenntnisse

Folgende Module werden als Vorkenntnis empfohlen:

  • Mechatronische Systeme
  • Signale, Systeme und Regelkreise
  • Technische Mechanik I, II und III
Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Die Studierenden sind in der Lage, die wesentlichen Komponenten des elektrischen Bordnetzes eines Fahrzeugs bestehend aus: Sensoren, Aktuatoren, Energiespeicher, Energieerzeugung, Kommunikationssysteme bezüglich ihres Aufbaus, Wirkprinzip und Interaktion im Fahrzeug zu verstehen.

Desweiteren  können die Studierenden die zwei wichtigen Themen Antriebsstrangregelung und Fahrdynamikregelung - bezüglich ihrer wesentlichen Funktionen und Eigenschaften erklären.

Verschiedene Diagnosestrategien zur Fehlerlokalisierung und deren jeweilige Anwendung sind den Studierenden bekannt.

Die Studierenden

  • kennen die Fachsprache und wichtige Grundlagen der Fahrzeugmechatronik
  • sind fähig, Anforderungen an Baugruppen und Teilsysteme zu formulieren
  • sind im Stande, in einem interdisziplinären Entwicklungsteam in der Fahrzeugtechnik zu kommunizieren
  • sind in der Lage, sich schnell in weiterführende und vertiefende fahrzeugmechatronischen Fragestellungen einzuarbeiten
Dauer 2
SWS 8.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 10.0
Voraussetzungen für die Vergabe von LP

Fahrzeugmechatronik: Klausurarbeit, 90 Min.

Labor Fahrzeugmechatronik: Laborarbeit

Labor autonome mobile Systeme: Laborarbeit

Leistungspunkte Noten

10 Creditpunkte

Modulverantwortlicher

Prof. Claus Fleig

Empf. Semester 6 und 7
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK - Hauptstudium, Schwerpunkt Fahrzeugmechatronik und Elektromobilität

Veranstaltungen

Fahrzeugmechatronik

Art Vorlesung
Nr. M+V616
SWS 4.0
Lerninhalt
  • Aktuatoren im Fahrzeug
  • Kommunikationssysteme im Fahrzeug
  • Antriebsstrangregelung und Fahrdynamikregelung
  • Diagnosestrategien
  • Regelungstechnische Anforderungen und Konzepte in der Fahrzeugmechatronik
  • ausgewählte Regelungskonzepte im Fahrzeug (z.B. Klopfregelung, Lambdaregelung,
  • Tempomat, Lastübernahme Kupplungsteuerung usw.)
  • Aufbau der Versorgungs- und Kommunikationsstruktur im Fahrzeug
  • Bussysteme im Automobil (LIN, CAN (A, B, CANopen), Flexray, Bluetooth)
  • Assistenten und Agenten
Literatur

R. Isermann: Mechatronische Systeme, Springer
Werner Zimmermann: Bussysteme in der Fahrzeugtechnik, Springer
Toralf Trautmann: Grundlagen der Fahrzeugmechatronik, Vieweg-Teubner
Robert Bosch GmbH (Hrsg.): Sicherheits- und Komfortsysteme, Vieweg

 

Labor Fahrzeugmechatronik

Art Labor
Nr. M+V617
SWS 2.0

Labor autonome mobile Systeme

Art Labor
Nr. EMI355
SWS 2.0
Lerninhalt

Das Labor vermittelt praktische Kenntnisse in der Programmierung und dem Entwurf autonomer mobiler Systeme.

Hierzu wird zunächst in zwei EInheiten das Robot operating System (ROS), eine in Forschung und Industrie populäre Middleware vorgestellt. Anschließend erfolgt die Anwendung von ROS an einer mobilen Plattform, dem Turtlebot 3, in Kleingruppen. Hierfür sind drei Labornachmittage vorgesehen:

  1. Nutzung von ROS mit einem simulierten Turtlebot (Physiksimulation mit Gazebo). Starten und Nutzen von ROS-Programmen, Aufzeichung von Daten.
  2. Lokalisierung und Kartierung einer Laborstrecke mit Hilfe des mobilen Roboters. Einsatz von SLAM-Verfahren zur Kombination von Raddrehzahl, IMU und Laserscandaten.
  3. Einbau eines Ultraschallsensors. Programmierung des US-Treibers, Programmierung eines ROS-Topics für die autonome Fahrt des mobilen Roboters.
  4. Abschluss von LAbornachmittag 3

In dem letzten Labornachmittag soll mit Hilfe von MATLAB/Simulink ein Fluglageregler auf eine autonome Drohne übertragen werden und diese gesteuert und parametriert werden.

Literatur
  • A. MArtinez, E. Fernandez, Learning ROS for Robotics Programming, Packt Publishing, 2013
  • A. Koubaa, Robot Operating System (ROS): The Complete Reference (Volume 3), Springer, 2019
  • W. Pietruszka, MATLAB und Simulink in der Ingenieurpraxis, 4te Auflage, Springer Vieweg, 2014 

 

Vertiefung Fahrzeugmechatronik und Elektromobilität

Lehrform Wissenschaftl. Arbeit/Sem
Lernziele / Kompetenzen

Die Module sind im Studienverlauf dargestellt:

https://ei.hs-offenburg.de/fileadmin/Einrichtungen/Fakultaet_E_I/files/Studienverlauf/Studienschwerpunkt_MK_2019.pdf

 

Dauer 1
SWS 22.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 25.0
Haeufigkeit jedes Semester

Fahrzeugtechnik und Antriebe

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden kennen mit Abschluss des Moduls alle relevanten Antriebstechnologien. Durch das Modul Fahrzeugantriebe sind Studenten fähig, verschiedene Pkw-Antriebskonzepte unter umfangreichen Gesichtspunkten auszuwählen. Sie können Teilkomponenten des Antriebstranges berechnen. Die Verbrennungsmotoren bilden einen Schwerpunkt, wobei auch aktuelle Entwicklungen wie  E-Antrieben vermittelt werden. Die Studierenden sind in der Lage aus gegebenen Informationen wissenschaftlich fundierte Urteile abzuleiten.
Die Studierenden besitzen Grundlagen- und Detailwissen auf dem Gebiet der Fahrzeugtechnik. Sie sind kompetent, heutige Fahrzeuge im Rahmen ihrer historischen Entwicklung unter technischen Aspekten zu betrachten. Sie verstehen das Prinzip der Überwindung der Fahrwiderstände, den Aufbau des Antriebsstranges und die Grundlagen der Fahrdynamik.
Die Studierenden sind in der Lage, das Gesamtsystem sowie die behandelten Fahrzeugkomponenten auszulegen, diese zu berechnen und als spätere Ingenieure in diesem Themenfeld tätig zu sein.

Sachkompetenz
Probleme im Bereich der Fahrzeugantriebe im beruflichen Umfeld lösen sie zielgerichtet. Sie sind in der Lage sich mit Fachvertretern und Laien über Informationen, Ideen, Problemen und Lösungen auszutauschen.

Sozial-ethische Kompetenz
Die Absolventen sind auf eine komplexe, globalisierte Arbeitswelt vorbereitet Die Absolventen finden sich schnell in neuen (Arbeits-)-Situationen zurecht
Die Absolventen haben gelernt, die eigenen Fähigkeiten selbständig auf die sich ständig verändernden Anforderungen anzupassen.
Durch die starke Einbindung in die Praxis verfügen die Studierenden über außergewöhnlich hohes Prozessverständnis.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90
Selbststudium / Gruppenarbeit: 120
Workload 210
ECTS 7.0
Voraussetzungen für die Vergabe von LP

Klausurarbeit, 120 Min.

Leistungspunkte Noten

7 Creditpunkte

Modulverantwortlicher

Prof. Claus Fleig

Empf. Semester 6
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK - Hauptstudium, Schwerpunkt Fahrzeugmechatronik und Elektromobilität

Veranstaltungen

Grundlagen Fahrzeugtechnik

Art Vorlesung
Nr. M+V620
SWS 2.0
Lerninhalt

·         

  • Historie, Statistik (Fahrzeuge, Verkehr, Sicherheit)
  • geometrische Grundgrößen, Schwerpunktbestimmung, Achslasten
  • Fahrwiderstände (Radwiderstand / Aerodynamik / Beschleunigungswiderstand /Steigungswiderstand)
  • Bremsen
  • Grundgrößen der Quer- und Vertikaldynamik, Reifenquer- und vertikaldynamik
  • Lenkung, Radaufhängung, Federung und Dämpfung
  • Kenntnis der prinzipiellen Achsbauarten und Lenksysteme
  • Aktive, passive und integrale Fahrzeugsicherheit

 

 

Literatur
  • Bruhn, D., Danner, D., Endruschat, P. G., u. weitere: Kraftfahrzeugtechnik, 2009, Westermann-Verlag
  • Brand, M., Fischer, R., Gscheidle, T., und weitere: Fachkunde Kraftfahrzeugtechnik, 2019, Europa-Lehrmittel-Verlag
  • Braess, H. H., Seiffert, U., Handbuch Kraftfahrzeugtechnik, 2016, Vieweg Verlag
  • Heißing, B., Ersoy, M., Gies, S., Fahrwerkhandbuch: Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven; 2017, Vieweg Verlag

Fahrzeugantriebe

Art Vorlesung
Nr. M+V621
SWS 4.0
Lerninhalt
  • Antriebskonzepte (Einfluss auf Traktion, Komfort, Gewicht, Verbrauch, Realisierung, Vor- und Nachteile)
  • Auslegung und Beurteilung von Fahrzeugantrieben
  • Verbrennungsmotoren

-          Verbrennungsmotoren Grundlagen

-           Kreisprozesse

-           Motormechanik

-          Kraftstoffe und Abgase

-          Aufladung von Verbrennungsmotoren

  • Grundlagen Fahrzeuggetriebe

-          Aufbau, Eigenschaften verschiedener Getriebekonzepte

  • Elektrische Antriebe

-          Eigenschaften elektrischer Antriebssysteme

-          Modellbildung und Ansteuerung elektrischer Antriebe

-          Anbindung des Elektroantriebs an den Antriebsstrang

 

Literatur

- Beitz, Grote: Dubbel – Taschenbuch für den Maschinenbau, Springer, Berlin
- Grohe: Otto- und Dieselmotoren, Vogle Buchverlag, Würzburg
- Köhler: Verbrennungsmotoren, Vieweg Verlag, Berlin
- Fuest, K., Döring, P.: Elektrische Maschinen und Antriebe, Vieweg Verlag
- Reif, K.: Konventioneller Antriebsstrang und Hybridantriebe, Vieweg und Teubner

Elektromobilität

Empfohlene Vorkenntnisse

Grundlagen der Mathematik, Physik und Elektrotechnik

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden kennen mit Abschluss des Moduls die unterschiedlichen Hybrid- und Elektrofahrzeugkonzepte sowie deren spezifischen Eigenschaften und die entsprechenden erforderlichen Komponenten. Die elektrischen Antriebskonzepte sowie die Energiespeicher bzw. Energiewandler bilden die Schwerpunkte. Die Studierenden können die physikalischen, chemischen und ingenieurtechnischen Grundlagen in Bezug auf den Aufbau und die Funktionsweise von elektrischen Antriebssystemen sowie elektrochemischen Energiewandlern und Energiespeichern anwenden.

Die Studierenden sind zudem in der Lage, unterschiedliche Betriebsarten und die Koordination der einzelnen Komponenten der Fahrzeuge und Antriebssysteme zu beschreiben sowie unterschiedliche Konzepte zu modellieren und zu bewerten.

Die Teilnehmer/innen haben Kenntnisse in Grundlagen und Anwendungen der Batterie- und Brennstoffzellentechnik. Sie verstehen das Prinzip der elektrochemischen Energieumwandlung und sind mit typischen Kennzahlen und charakteristischen Kennlinien vertraut. Sie kennen Aufbau und Funktionsweise von typischen Batterien (Alkali-Mangan-Zellen), Akkumulatoren (Blei-Säure-Batterien, Lithium-Ionen-Batterien) und Brennstoffzellen (Polymermembran-Brennstoffzelle). Sie verstehen die Systemtechnik (Ladeverfahren, Sicherheit) und Anforderungen typischer Anwendungen (portable Geräte, Elektromobilität, Speicherung regenerativer Energien).

Sachkompetenz

Die Teilnehmenden lösen Problemstellungen der Elektromobilität im beruflichen Umfeld zielgerichtet. Durch die starke Einbindung in die Praxis verfügen sie über ein hohes Verständnis der Zusammenhänge. Sie sind in der Lage sich mit Fachvertretern und Laien über Informationen, Ideen, Problemen und Lösungen auszutauschen.

Sozial-ethische Kompetenz

Die Teilnehmenden sind auf eine komplexe, globalisierte Arbeitswelt vorbereitet. Sie finden sich schnell in neuen (Arbeits-)-Situationen zurecht und können auf zukünftige Entwicklungstrends reagieren und diese mitgestalten. Die Teilnehmenden haben gelernt, die eigenen Fähigkeiten selbständig auf die sich ständig verändernden Anforderungen anzupassen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Batterie- und Brennstoffzellentechnik: Klausurarbeit, 60 Min.

Elektromobilität: Klausurarbeit, 60 Min.

Die Modulnote setzt sich je zur Hälfte aus den Noten der o. g. Lehrveranstaltungen zusammen.

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Patrick König

Empf. Semester 6
Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MKA - Hauptstudium, Schwerpunkt Fahrzeugmechatronik und Elektromobilität

Veranstaltungen

Elektromobilität

Art Vorlesung
Nr. EMI353
SWS 2.0
Lerninhalt
  • Motivation für Elektromobilität sowie technische Herausforderungen
  • Hybride und elektrische Antriebskonzepte
  • Antriebskomponenten von Elektro- und Hybridfahrzeugen (Verbrennungsmotor, Getriebe, Energiespeicher, Elektromotor, Leistungselektronik)
  • Betriebsstrategien für Elektro- und Hybridfahrzeuge
  • Ladeverfahren und -infrastruktur
  • Sicherheitsmechanismen in Fahrzeugen mit elektrischem Antrieb
  • Ermittlung der Energieverbräuche und Betrachtung von Umweltaspekten
  • Aktuelle und zukünftige Trends der Elektromobilität

 

Literatur
  • Kampker, A., Vallée, D., Schnettler A., Elektromobilität - Grundlagen einer Zukunftstechnologie; SpringerVieweg, 2013
  • Reif, K., Noreikat, K., Borgeest, K., Kraftfahrzeuge - Hybridantriebe; SpringerVieweg 2012
  • Wallentowitz, H., Freialdenhoven, A., Strategien zur Elektrifizierung des Antriebsstranges Technologien, Märkte und Implikationen, 2. Auflage, Vieweg + Teubner-Verlag, 2011
  • Hofmann, P., Hybridfahrzeuge - Ein alternatives Antriebskonzept für die Zukunft, Springer-Verlag, 2010
  • Naunin, D., Bartz, W., Wippler, E., Hybrid-, Batterie- und Brennstoffzellen-Elektrofahrzeuge Technik, Strukturen und Entwicklung, Expert-Verlag, 2006

Batterie- und Brennstoffzellentechnik

Art Vorlesung
Nr. M+V686
SWS 2.0
Lerninhalt
  • Grundlagen: Geschichte, Prinzip der elektrochemischen Energiewandlung, Aufbau elektrochemischer Zellen
  • Batterien: Kennzahlen und Kennlinien, Alkali-Mangan, Blei-Säure, Lithium-Ionen, Systemtechnik
  • Brennstoffzellen: Kennlinien, Wirkungsgrade, Polymerelektrolytmembran-Brennstoffzelle
  • Anwendungen: portable Anwendungen, mobile Anwendungen und Elektromobilität, stationäre Anwendungen und regenerative Energiespeicher
Literatur
  • W. Bessler, Skript zur Vorlesung
  • P. Kurzweil, O. Dietlmeier, Elektrochemische Speicher. Springer Vieweg, Wiesbaden, 2015.

Vertiefung Fahrzeugmechatronik und Elektromobilität

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden erhalten Überblick über die Steuergeräteentwicklung im Automotive-Umfeld mit Fokus auf dem Systemverständnis und die Softwareentwicklung.

Nach Abschluss     

  • hat der Studierende einen Überblick über die Fahrzeugarchitektur, grundlegende Fahrzeugsysteme und gängige Steuergeräte mit ihrer Funktion
  • kann der Studierende die Steuergerätekommunikation (CAN, CAN_FD, LIN,Flexray, MOST, Ethernet), Topologie und Kommunikationsmatrix beurteilen und analysieren       
  • kennt der Studierende die klassische Steuergeräte- und Softwarearchitektur sowie die Struktur nach AUTOSAR       
  • kennt die Methode der Steuergeräteentwicklung nach dem V-Modell
  • kennt die Methode der Steuergeräteentwicklung nach den Kriterian der Funktionalen Sicherheit (ISO 26262)
  • kann die Komponenten des Bordnetzes (Quellen, Senken, Speicher, Bordnetzarchitekturen, 14V, 48V und HV) benennen und analysieren       
  • hat der Studierende eine mentale Landkarte der Modellbasierten Softwareentwicklung (RCP, MiL,SiL, PiL, HiL) und Autocode      
  • kennt der Studierende die Grundlagen zu Tests mechatronischer Systeme und der Steuergerätediagnose (UDS und OBD)

 

Lernziele für die Wahlpflichtfächer:


Die Studierenden können ihre Interessen im Bereich der Elektrotechnik soweit selbst beurteilen, dass sie sich für die Mechatronik sinnvolle elektrotechnische Ergänzungen aussuchen, die ihnen vertiefte Kenntnisse ermöglichen.

 

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Fahrzeugelektronik

Art Vorlesung
Nr. M+V619
SWS 2.0
Lerninhalt
  • Aufbau und Funktion des elektrischen Bordnetzkomponenten, Zündanlage, Starter und Lichtmaschine
  • Gebräuchliche Fahrzeug-Datenbusse: CAN, LIN, MOST, FlexRay
  • Bordnetzstrukturen in Fahrzeugen: Aufbau, Randbedingungen, Entwurf, Ausführung
  • Komfortelektronik.

 

Literatur

Bosch: Fahrzeugelektrik u. Fahrzeugelektronik , Vieweg / Teubner

Wallentowitz/Reif: Handbuch Kraftfahrzeugelektronik, Vieweg / Teubner

W. Zimmermann: Bussysteme in der Fahrzeugtechnik: Protokolle und Standards , Vieweg / Teubner

Robotik

Lehrform Wissenschaftl. Arbeit/Sem
Lernziele / Kompetenzen

Ein erstes Lernziel ist, dass die im Studium erworbenen Kenntnisse und Fähigkeiten in einem Projekt aus dem Bereich der Mechatronik methodisch und im Zusammenhang eingesetzt werden können.
Die Kompetenz, ein Problem innerhalb einer vorgegebenen Frist selbstständig strukturieren, nach wissenschaftlichen Methoden systematisch bearbeiten und schließlich transparent dokumentieren zu können, qualifiziert die Absolventen für einen Eintritt in die Community der Ingenieure.
Wesentlicher Bestandteil ist die Kompetenz zur zielgruppengerechten Präsentation des Projektes und der in der Arbeit erzielten Resultate in verschiedenen Präsentationsformen.
Mit dem erfolgreichen Abschluss des Moduls ist damit auch ein indirektes Lernziel erreicht: die Studierenden mit dem erfolgreichen Abschluss "ihres" Projektes ein zur Ausübung des Ingenieurberufes hinreichendes Selbstverständnis mit auf den Weg zu geben.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr. Ing. Stefan Hensel

Haeufigkeit jedes Semester
Veranstaltungen

Labor Robotik

Art Labor
Nr. M+V618
SWS 2.0

Robotik

Art Vorlesung
Nr. M+V612
SWS 2.0
Lerninhalt

A) Einführung und Überblick
Definition, Robotertypen und Anwendungsbereiche

B) Koordinatensysteme und Bewegungen, Kinematik
Roboterstellung: Koordinatensysteme, Rotationsmatrizen, homogene Matrizen, Euler-Winkel, Denavit-Hartenberg-Konvention
Roboter- und Weltkoordinaten: Vorwärtstransformation, Rückwärtstransformation, kinematische Transformationen, Jacobi-Matrix
Bewegungsbahnen: Punkt-zu-Punkt, Bahnsteuerung, Linear- und Zirkularinterpolation, Überschleifen
Programmierung von Bewegungen: Online (Teach-in) und Offline (textbasiert)

C) Mechanische und elektromechanische Eigenschaften von Robotern
mechanische Elemente, elektromechanische Komponenten, Greifer, Sensoren
dynamisches Verhalten: Berechnung von Kräften und Drehmomenten
Gesamtmodell mit Antrieben, Servoelektronik, Getriebematrizen

D) Steuerung und Regelung von Robotern
Gelenkregelung: dezentrale Kaskadenstruktur, adaptive Gelenkregelung
kartesische Lageregelung, Kraftregelung, hybride Regelung
modellbasierte Regelungskonzepte: zentrale Vorsteuerung, Entkopplung und Linearisierung, robuste Regler
nichtanalytische Regelungsverfahren: Fuzzy-Regler, neuronale Lernverfahren

E) Intelligente Robotersysteme
Bilderfassung, Bildverarbeitung, Entscheidungsfindung
Serviceroboter, Humanoidroboter

Literatur

Weber, W., Industrieroboter: Methoden der Steuerung und Regelung, Hanser, 2009

Craig, J.J., Introduction to Robotics: Mechanics and Control, Reading: Addison-Wesley, 2002

Siciliano, B., Khatib, O., Springer Handbook of Robotics, Springer, 2008

Bachelorarbeit

Lehrform Wissenschaftl. Arbeit/Sem
Dauer 1
SWS 2.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 14.0
Haeufigkeit jedes Semester
Veranstaltungen

Bachelor-Thesis

Art Wissenschaftl. Arbeit
Nr. EMI341
SWS
Lerninhalt

Individuelle Themenstellung wird in vorgegebener Zeit selbständig bearbeitet und dokumentiert.

Literatur

Wird von den Betreuern vorgegeben

Kolloquium

Art Wissenschaftl. Arbeit
Nr. EMI342
SWS 2.0
Lerninhalt

Die Teilnahme an mindestens 8 Fachvorträgen über andere Bachelor-Arbeiten der selben Fakultät muss vor der Anmeldung der eigenen Arbeit nachgeweisen werden.

Am Ende der Bearbeitungszeit der Bachelor-Thesis folgt ein öffentlicher Fachvortrag im Umfang von 15-20 Minuten über die eigene Arbeit und deren Randbedingungen.

 

Literatur

Wird von den Betreuern vorgegeben

 Zurück