Mechatronik (auslaufend)

Modulhandbuch

 Zurück 

Mechatronik (MK)

PO-Version [  20142  ]

Angewandte Informatik

Lehrform Vorlesung
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Kommunikationsnetze

Art Vorlesung
Nr. EMI215
SWS 2.0
Lerninhalt

OSI- und TCP/IP-Referenzmodell

Sicherungsschicht

  • Rahmenbildung
  • Fehlerkorrektur und Fehlererkennung
  • Schiebefensterprotokolle
  • Mehrfachzugriffsprotokolle
  • Kopplung von Netzwerken

Vermittlungsschicht

  • Routing
  • Routing im Internet
  • IPv4 (inkl. Subnetting)
  • IPv6

Transportschicht

  • TCP
  • UDP

Anwendungsschicht

  • DNS
  • E-Mail (STMP, POP, IMAP etc.)
  • Web (HTTP, Web2.0, etc.)

Sicherheit

  • Geheimhaltung, Authentifizierung, Integrität
Literatur

Tanenbaum A. S., Computernetzwerke, 4. Auflage, München, Pearson Studium, 2003
Stevens Richard W., TCP/IP, Reading, Mass. [u.a.], Addison-Wesley, 2005
Sikora, A., Technische Grundlagen der Rechnerkommunikation: Internet-Protokolle und Anwendungen, München, Wien, Hanser, 2003

SW-Engineering für Embedded Systems

Art Vorlesung
Nr. EMI214
SWS 2.0
Lerninhalt

- Phasen der Softwareentwicklung

- Abstraktion und Hierarchie

- Echtzeit & Zuverlässigkeit
--- Programmiertechniken
--- Speichermanagement
--- Echtzeitbetriebssysteme

- Software

- Entwicklungsprozesse
--- Sequentielle Vorgehensmodelle
--- Iterative Vorgehensmodelle

- Entwurf
--- Strukturierter und modulare Entwurf
--- Modellbasierter Entwurf

- Implementierung
--- Werkzeuge
--- Anforderungsanalyse
--- Software-Qualitätssicherung
--- Dokumentation

Literatur

Balzert, H., Lehrbuch der Software-Technik, Band 1, 3. Auflage, Heidelberg, Spektrum, 2009

Sommerville, I., Software Engineering, 9. Auflage, München, Pearson Studium, 2012                                                     

Berns K., Schürmann B., Trapp M., Eingebettete Systeme: Systemgrundlagen und Entwicklung eingebetteter Software, Wiesbaden, Vieweg+Teubner, 2010

Schellong H., Moderne C-Programmierung: Kompendium und Referenz, Heidelberg, Springer, 2005

Korff, A., Modellierung von eingebetteten Systemen mit UML und SysML, Heidelberg, Spektrum, 2008

Anwendungen in der Mechatronik

Lehrform Vorlesung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 7.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Seminar Projektmanagement

Art Seminar
Nr. E+I235
SWS 2.0
Lerninhalt

Im Rahmen des Seminars Projektmanagement wird eine praxisorientierte Einführung in die Methoden und Vorgehensweisen des modernen Projektmanagements gegeben. Das Seminar umfasst im Einzelnen folgende Inhaltspunkte:

- Projektmanagement: Definitionen, Richtlinien, Nutzen
Projektmanagement und Projekt Definitionen nach DIN;
Determinanten des Projektmanagement-Erfolgs; Das "Magische
Dreieck" des Projektmanagements.

- Projektorganisationsformen
Reine Projektorganisation, Projektkoordination, Matrix-
Organisation

- Projektlebenszyklus
- Projektdefinition
- Projektplanung : Kick-off, Erstellen eines
Projektstrukturplans (PSP); Verfahren der
Aufwandsschätzung; Termin- und Ablaufplanung (Gantt-Chart,
Meilensteinplan; Netzplantechnik), Ressourcen- und
Kostenplanung; Risikomanagement; Praxisanleitung zur
Projektplanung.
- Projektabwicklung/ -controlling : Projektabwicklung,
Qualitäts- und Config.-Management); Techniken zur Erfassung
zukunftbezogener IST-Daten; Datenauswertung (Soll-Ist
Vergleich; Earned-Value Analyse(EVA); Meilenstein Trend
Analyse (MTA)); Definieren von Steuerungsmaßnahmen.
- Projektabschluss : Produktabnahme; Projektabschlußbericht
mit Abschlussanalyse;Projektabschluss-Meeting (Kick-Out);
Feedback zum Projekt.

- Kosten des Projektmanagements

- Einführung in MS Projects - praktische Übung im Team

- Arbeitstechniken zur Unterstützung von Projektmanagement:
Kreativitätstechniken; Problemlösungstechniken;
Kommunikationstechniken; Verhalten und Steuern von
Besprechungen (Videopräsentation).

- Abschlussdiskussion - Feedback der Seminarteilnehmer

 

Literatur

Burghardt, M., Einführung in Projektmanagement, 4. Auflage, Erlangen, Publicis MCD Verlag, 2002

Haynes, M. E., Projektmanagement, 3. Auflage, Menlo Park, Calif., Crisp Learning Verlag, 2002

Wischnewski, E., Projektmanagement auf einen Blick, Braunschweig, Wiesbaden, Vieweg, 1993

Labor Mechatronik

Art Labor
Nr. E+I321
SWS 3.0
Lerninhalt

Es soll eine möglichst alle Aspekte eines mechatronischen Systems umfassende Projektaufgabe in Gruppen bearbeitet werden. Dabei sollen die Projektmanagement-Methoden des Seminars Projektmanagement angewendet werden.
Die Studierenden werden mit einem möglichst konkreten und somit auch intuitiv erfassbaren mechatronischen Projekt konfrontiert. Es müssen die konkreten Gegebenheiten erfasst und analysiert werden und die Anforderungen an das Gesamtsystem zum Erreichen des gesetzten Ziels aufgestellt werden. Um das Gesamtsystem erfolgreich betreiben zu können, ist eine zunehmende Abstraktion von den konkreten Komponenten und deren Leistungsfähigkeit hin zu den für das System relevanten Eigenschaften erforderlich. Auf diesem Hintergrund soll dann eine geeignete Steuerung oder Regelung des Systems entworfen und umgesetzt werden.
Beispiel für Projektaufgaben
- Lösen einer Handhabungsaufgabe mit einem Industrieroboter
- Einsatz eines Bilderfassungssystems bei einer Handhabungsaufgabe
- Orientierung und Navigation mit einem bestehenden System (mobile Serviceroboter-Einheit, Roboterhund, ...)
- Entwurf eines systemfähigen Regelungs- und Steuerungskonzepts für bestehende mechatronische Komponenten
- Simulation von einfachen mechatronischen Gesamtsystemen
- Fußballroboter (auch mit LEGO)
- Programmierung einfacher Humanoidroboter bzw. von deren Elementen
- eigene Projektvorschläge der Studierenden

Literatur

Aktuelle Fachliteratur wird in der Veranstaltung bekannt gegeben oder zur Verfügung gestellt.

Automatisierungssysteme

Lehrform Vorlesung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Labor Automatisierungssysteme

Art Labor
Nr. EMI252
SWS 2.0
Lerninhalt

In den Laborübungen lernen die Studenten am Beispiel dier SIMATIC S7-1500 und S7-300 wie speicherprogrammierbare Steuerungen bedient und programmiert werden. Als Beispielanwendungen kommen dabei wahlweise ein Fabrikmodell mit verschiedenen Bearbeitungsstationen, ein Festoportalroboter sowie eine Rundtakttischapplikation zum Einsatz. Es werden u.a. folgende Themen behandelt:

  • Entwurf und Implementierung von Verknüpfungsfunktionen, Verknüpfungssteuerungen und Ablaufsteuerungen .
  • die Programmiersprachen Funktionsbausteinsprache(FUP), Ablaufsprache (GRAPH7), Strukturierten Text (SCL) sowie in geringerem Umfang Kontaktplan (KOP) und Anweisungsliste (AWL)
  • Umgang mit Programmiersystemen anhand der Software TIA-Protal von Siemens
  • Entwurf und Programmierung graphischer Bedienoberflächen und Integration in ein Automatisierungssystem
  • Analogwertverarbeitung mit Automatisierungsrechnern
Literatur

 

Ausführliche Laboranleitungen zu den Versuchen

Automatisierungssysteme

Art Vorlesung
Nr. EMI251
SWS 4.0
Lerninhalt
  • Entwicklung der Automatisiserungtechnik
  • Produktionsprozesse
  • Aufgaben der Automatisierungstechnik
  • Automatisierungsstrukturen
  • Rechnersysteme der Automatisierungstechnik: SPS, PLS, PR, LON, IMC
  • Systeme der Fertigungsautomation: CNC, Roboter, Transportsysteme
  • Serielle Schnittstellen
  • Parallele Buss
  • Feldbusse Interbus-S, CAN, Profibus, ASI
  • Software MC Step5, Step7, IEC 1131-3, Echtzeitbetriebssysteme
Literatur

Berger, H., Automatisieren mit Step 7 in AWL und SCL, Erlangen, München, Publicis-MCD-Verlag, 1999

Schnell G., Wiedemann B., Bussysteme in der Automatisierungstechnik, 7. Auflage, Wiesbaden, Vieweg + Teubner, 2008

Langmann, R., Taschenbuch der Automatisierung, 2. Auflage, München, Fachbuchverlag Leipzig, 2010

Bachelorarbeit

Lehrform Wissenschaftl. Arbeit/Sem
Dauer 1
SWS 2.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 14.0
Haeufigkeit jedes Semester
Veranstaltungen

Bachelor-Thesis

Art Wissenschaftl. Arbeit
Nr. EMI341
SWS
Lerninhalt

Individuelle Themenstellung wird in vorgegebener Zeit selbständig bearbeitet und dokumentiert.

Literatur

Wird von den Betreuern vorgegeben

Kolloquium

Art Wissenschaftl. Arbeit
Nr. EMI342
SWS 2.0
Lerninhalt

Die Teilnahme an mindestens 8 Fachvorträgen über andere Bachelor-Arbeiten der selben Fakultät muss vor der Anmeldung der eigenen Arbeit nachgeweisen werden.

Am Ende der Bearbeitungszeit der Bachelor-Thesis folgt ein öffentlicher Fachvortrag im Umfang von 15-20 Minuten über die eigene Arbeit und deren Randbedingungen.

 

Literatur

Wird von den Betreuern vorgegeben

Betriebliche Organisation

Lehrform Vorlesung/Seminar
Dauer 2
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 150 h
Workload 240 h
ECTS 6.0
Haeufigkeit jedes Semester
Veranstaltungen

Kommunikation und Interaktion in Unternehmen

Art Seminar
Nr. EMI323
SWS 2.0
Lerninhalt
  • Wahrnehmung als Grundlage der Kommunikation
  • Nonverbale und verbale Kommunikation, Ebenen der Interaktion
  • Selbstbild und Fremdbild: die Wirkung des eigenen Verhaltens kennenlernen
  • Einführung in die Transaktionsanalyse
  • Übungen zur Transaktionsanalyse: Analyse des individuellenGesprächsverhalten, erkennen und verstehen der Verhaltensweisen anderer
  • Charakteristisches Kommunikationsverhalten: Das Struktogramm
  • Konkrete Gesprächsstrategien: Ursachen und Wirkungen
  • Anwendung der Kommunikationsstrategien in schwierigen Gesprächssituationen
  • Erarbeiten und praktische Erprobung von Konfliktlösungsstrategien und Fragetechniken
  • Feedback auf das eigene Redeverhalten
  • Übungen für ein Assessment-Center
Literatur

Schulz von Thun, Miteinander reden, Band 1-3, Rowohlt, 1981

Betriebswirtschaftslehre

Art Vorlesung
Nr. EMI324
SWS 2.0
Lerninhalt
  • Grundlagen
  • Unternehmensführung/Management
  • Informationswirtschaft (Externes und internes Rechnungswesen)
  • Finanzierung und Investition
  • Personalwirtschaft
  • Materialwirtschaft
  • Produktionswirtschaft
  • Absatzwirtschaft/Marketing
Literatur

Vahs, D., Schäfer-Kunz, J., Einführung in die Betriebwirtschaftslehre, 5. Auflage, Stuttgart, Schäffer-Poeschel-Verlag, 2007

Betriebspraktische Wahlpflichtfächer

Art Vorlesung
Nr. E+I325
SWS 4.0
Lerninhalt

s. Wahlpflichtfachliste

Literatur

wird in den Lehrveranstaltungen bekannt gegeben

Betriebspraktische Wahlpflichtfächer

Art Vorlesung
Nr. EMI325
SWS 4.0
Lerninhalt

s. Wahlpflichtfachliste

Literatur

wird in den Lehrveranstaltungen bekannt gegeben

Betriebliche Praxis

Lehrform Praktikum
Dauer 1
Aufwand
Lehrveranstaltung 95 Präsenztage
Selbststudium / Gruppenarbeit: 720 h
Workload 720 h
ECTS 24.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Betriebspraktikum

Art Praktikum
Nr. EMI322
SWS
Lerninhalt

Das Ziel des Betriebspraktikums ist, durch Tätigkeiten in einschlägigen Betrieben das gewählte Berufsfeld soweit kennen zu lernen, dass eine sinnvolle Schwerpunktbildung und Auswahl von Fächern nach eigener Neigung für die Studierenden möglich wird.

Literatur

Wird im Praktikumsbetrieb bekannt gegeben

Bussysteme und Schnittstellen

Lehrform Vorlesung
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Axel Sikora

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Bussysteme und Schnittstellen

Art Vorlesung
Nr. EMI244
SWS 2.0
Lerninhalt

- Datenübertragung zwischen digitalen Baugruppen in Kanälen.
--- Differentielle und massebezogene Übertragung, bidirektionale Übertragung.
--- Codierung und Taktrückgewinnung, Datensicherung, Parity, Interleaving, Handshake
- Protokolle auf Schnittstellen und Bussystemen.
--- RS232 Schnittstelle als Beispiel für asynchrone Datenübertragung.
--- Physikalische und logische Adressierung, Blockübertragung, Packaging
--- Zugriff zum Medium, Arbitrierung, Collision Detection, Fehlermodellierung, Topologie.
- Adressierung und Vermittlungstechniken
- Moderne Bussysteme
--- als Gerätenetzwerke (USB)
--- als lokale Netzwerke (Ethernet)
--- für den industriellen Einsatz (CAN, Real-Time Ethernet, Feldbusse)
- Kurzstreckenfunksysteme
--- RFID
--- IEEE802.15.4 / ZigBee
--- Bluetooth
--- WLAN

Literatur

Dembrowski, K., Computerschnittstellen und Bussysteme, 2. Auflage, Heidelberg, Hüthig Verlag, 2001

Zimmermann, W., Schmidgall R., Bussysteme in der Fahrzeugtechnik, 4. Auflage, Wiesbaden, Vieweg+Teubner, 2010

Klasen, F., Oestreich V., Volz M., Industrielle Kommunikation mit Feldbus und Ethernet, Berlin, Offenbach, VDE Verlag, 2010

Sikora, A., Wireless LAN, Addison-Wesley, 2001

Wittgruber, F., Digitale Schnittstellen und Bussysteme, 2. Auflage, Wiesbaden, Vieweg Verlag, 2002

 

Labor Bussysteme und Schnittstellen

Art Labor
Nr. EMI245
SWS 2.0
Lerninhalt

TBD - neu ab WS 2012/13

Elektrische Antriebe I

Lehrform Vorlesung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Leistungselektronik

Art Vorlesung
Nr. EMI256
SWS 4.0
Lerninhalt
  • Aufgaben der Leistungselektronik
  • Bauelemente der Leistungselektronik
  • Wechselstrom- und Drehstromsteller
  • Netzgeführte Stromrichter
  • Selbstgeführte Stromrichter
  • Umrichter
  • Verfahren zur Ansteuerung von Stromrichtern
Literatur

Jäger, R., Stein, E., Leistungselektronik, VDE-Verlag, Berlin, Offenbach, 2011
Schröder, D., Leistungselektronische Schaltungen, 2. Auflage, Berlin, Heidelberg, Springer-Verlag, 2008
Specovius, J., Grundkurs Leistungselektronik, 2. Auflage, Wiesbaden, Vieweg Verlag, 2008

Grundlagen elektrischer Antriebe

Art Vorlesung
Nr. EMI257
SWS 2.0
Lerninhalt

- Grundsätzlicher Aufbau von Antriebssystemen:
Lasten, Getriebe, Motor, Umformer, Netz
- Grundlagen der Antriebstechnik:
Mechanische Größen, Energieflussbetrachtung, Drehmomenterzeugung, Verluste, Wirkungsgrad
Nennwerte von Elektromotoren, Drehfeld
- Gleichstrommaschinen:
Aufbau, Wirkungsweise, Grundgleichungen, Betriebsverhalten, DC-Motoren mit Permanentmagneterregung
DC-Reihenschlussmotor, Universalmotor
- Synchronmaschinen:
Aufbau, Wirkungsweise, Grundgleichungen, Betriebsverhalten, Einphasenbetrieb, Vergleich Permanent-/ Reluktanz-/Hysterese-Läufer
- Schrittmotoren:
Aufbau u. Schaltung, Stromversorgung und Ansteuerung, Betriebsverhalten, Anwendungen
- Elektronikmotoren:
Aufbau, Ansteuerung und Anwendung
- Linearmotoren für kleine Leistungen

Literatur

Jäger, R., Stein, E., Leistungselektronik, Berlin, Offenbach, VDE-Verlag, 2011
Specovius, J., Grundkurs Leistungselektronik, 8. Auflage, Wiesbaden, Vieweg Verlag, 2017
Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2015
Fischer, R., Elektrische Maschinen, 16. Auflage, München, Wien, Hanser Verlag, 2017

Elektrische Antriebe II

Lehrform Vorlesung/Labor
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Industrielle Antriebe

Art Vorlesung
Nr. EMI258
SWS 2.0
Lerninhalt

- Lastkennlinien und Bewegungsgleichungen elektrischer Antriebe
- Sensoren für elektrische Antriebe
- Wicklungen von Drehfeldmaschinen
- Raumzeigertheorie
- Stationäres mathematisches Modell und Betriebskennlinien der Asynchronmaschine im Grunddrehzahl- und Feldschwächbereich
- Ausführungsformen und Regelungsstruktur stromrichtergespeister Antriebe mit Asynchronmaschinen
- Verfeinertes stationäres mathematisches Modell der permanentmagneterregten Synchronmaschine
- Regelungsstruktur stromrichtergespeister Antriebe mit permanentmagneterregten Synchronmaschinen

Literatur

Meyer, M., Elektrische Antriebstechnik, Bände 1 und 2., Berlin, Heidelberg, Springer-Verlag, 1985

Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2001

Fischer, R., Elektrische Maschinen, 16. Auflage, München, Wien, Hanser Verlag, 2013

Labor Elektrische Antriebe und Leistungselektronik

Art Labor
Nr. EMI259
SWS 2.0
Lerninhalt

Untersuchung des Betriebsverhaltens von Gleichstrom-, Asynchron-und permanentmagneterregten Synchronmaschinen sowie von Schrittmotoren
- Messtechnische Ermittlung von Maschinenparametern
- Ausmessung von Bauelementen der Leistungselektronik
- Betrieb elektrischer Maschinen mit Thyristor- und Transistorstellgliedern
- Inbetriebnahme von Regelkreisen bei elektrischen Antrieben

Literatur

Jäger, R., Stein, E., Leistungselektronik, Berlin, Offenbach, VDE-Verlag, 2011
Schröder, D., Leistungselektronische Schaltungen, 3. Auflage, Berlin, Heidelberg, Springer-Verlag, 2012
Specovius, J., Grundkurs Leistungselektronik, 8. Auflage, Wiesbaden, Vieweg Verlag, 2017
Schröder, D., Elektrische Antriebe - Regelung von Antriebssystemen, 4. Auflage, Berlin, Heidelberg, Springer-Verlag, 2015
Fischer, R., Elektrische Maschinen, 16. Auflage, München, Hanser Verlag, 2013
Meyer, M., Elektrische Antriebstechnik, Bände 1 und 2, Berlin, Heidelberg, Springer-Verlag, 1985

Embedded Systems

Empfohlene Vorkenntnisse

Ingenieur-Informatik

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Der Teilnehmer beherrscht den Umgang mit Mikroprozessoren und Mikrocontrollern, versteht den Einsatz von Assemblerprogrammierung, kann Assembler in Hochsprachen einbinden und geht strukturiert vor. Er kann eigene Embedded Systems aufbauen.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90, Laborarbeit

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Daniel Fischer

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium
Bachelor EI, Hauptstudium
Bachelor EI-plus, Hauptstudium

Bachelor EI-3nat, Hauptstudium

Veranstaltungen

Embedded Systems

Art Vorlesung
Nr. EMI231
SWS 2.0
Lerninhalt

Befehlsstrukturen und –verarbeitung in Mikroprozessoren Adressierung der 80x86-Prozessoren Assembler-Source-Code erstellen und umsetzen in Objectcode und ausführbare Dateien Verbindung zum Betriebssystem durch Interrupts Zyklische und verzweigte Programme Flags Stackoperationen Logische und arithmetische Befehle Makros und Prozeduren Periphere Anbindung mit IN und OUT Textausgaben Adressierungsarten Aufbau von Mikrocontrollern Register, RAM, EEPROM, Flash Ports und Peripherie Systementwicklung Tools zum effektiven Arbeiten mit Embedded Systems

 

Literatur

Uhlenhoff, A., Mikrocontroller Werkzeugkasten HC12, Aachen, Shaker Verlag, 2002

Heiß, P., PC Assemblerkurs, Heise-Verlag, 1994

Labor Embedded Systems

Art Labor
Nr. EMI232
SWS 2.0
Lerninhalt
  • Vorbereitende Arbeiten
  • Einrichten einer IDE auf dem PC
  • Anwendung der in der VL erlernten Befehle
  • Ausführbare Dateien direkt erstellen, also ohne Übersetzungshilfen
  • Untersuchung der EXE-Dateien in Hexadezimaldarstellung
  • Echtzeitanwendungen
  • Textverarbeitung Embedded Systems
  • Vollständiger Aufbau eines eigenen Embedded Systems (das vom Studierenden käuflich erworben werden kann)
  • Aufbringen eines Bootloaders und eines Betriebssystems
  • Verbinden mit einem PC und Datenkommunikation einrichten
  • Analoge und digitale Schnittstellen in Programme einbinden
  • Zusatzhardware integrieren
  • Stand-alone-System aufbauen
  • Tools kennen lernen

 

Literatur

Laborumdrucke, Hochschule Offenburg, 2019

Fahrzeugmechatronik

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden sind in der Lage, die wesentlichen Komponenten des elektrischen Bordnetzes eines Fahrzeugs bestehend aus: Sensoren, Aktuatoren, Energiespeicher, Energieerzeugung, Kommunikationssysteme bezüglich ihres Aufbaus, Wirkprinzip und Interaktion im Fahrzeug zu verstehen.

Desweiteren  können die Studierenden die zwei wichtigen Themen Antriebsstrangregelung und Fahrdynamikregelung - bezüglich ihrer wesentlichen Funktionen und Eigenschaften erklären.

Verschiedene Diagnosestrategien zur Fehlerlokalisierung und deren jeweilige Anwendung sind den Studierenden bekannt.

Die Studierenden

  • kennen die Fachsprache und wichtige Grundlagen der Fahrzeugmechatronik
  • sind fähig, Anforderungen an Baugruppen und Teilsysteme zu formulieren
  • sind im Stande, in einem interdisziplinären Entwicklungsteam in der Fahrzeugtechnik zu kommunizieren
  • sind in der Lage, sich schnell in weiterführende und vertiefende fahrzeugmechatronischen Fragestellungen einzuarbeiten
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 7.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Fahrzeugmechatronik

Art Vorlesung
Nr. M+V616
SWS 4.0
Lerninhalt
  • Aktuatoren im Fahrzeug
  • Kommunikationssysteme im Fahrzeug
  • Antriebsstrangregelung und Fahrdynamikregelung
  • Diagnosestrategien
  • Regelungstechnische Anforderungen und Konzepte in der Fahrzeugmechatronik
  • ausgewählte Regelungskonzepte im Fahrzeug (z.B. Klopfregelung, Lambdaregelung,
  • Tempomat, Lastübernahme Kupplungsteuerung usw.)
  • Aufbau der Versorgungs- und Kommunikationsstruktur im Fahrzeug
  • Bussysteme im Automobil (LIN, CAN (A, B, CANopen), Flexray, Bluetooth)
  • Assistenten und Agenten
Literatur

R. Isermann: Mechatronische Systeme, Springer
Werner Zimmermann: Bussysteme in der Fahrzeugtechnik, Springer
Toralf Trautmann: Grundlagen der Fahrzeugmechatronik, Vieweg-Teubner
Robert Bosch GmbH (Hrsg.): Sicherheits- und Komfortsysteme, Vieweg

 

Labor Fahrzeugmechatronik

Art Labor
Nr. M+V617
SWS 2.0

Fahrzeugtechnik und Antriebe

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden kennen mit Abschluss des Moduls alle relevanten Antriebstechnologien. Durch das Modul Fahrzeugantriebe sind Studenten fähig, verschiedene Pkw-Antriebskonzepte unter umfangreichen Gesichtspunkten auszuwählen. Sie können Teilkomponenten des Antriebstranges berechnen. Die Verbrennungsmotoren bilden einen Schwerpunkt, wobei auch aktuelle Entwicklungen wie  E-Antrieben vermittelt werden. Die Studierenden sind in der Lage aus gegebenen Informationen wissenschaftlich fundierte Urteile abzuleiten.
Die Studierenden besitzen Grundlagen- und Detailwissen auf dem Gebiet der Fahrzeugtechnik. Sie sind kompetent, heutige Fahrzeuge im Rahmen ihrer historischen Entwicklung unter technischen Aspekten zu betrachten. Sie verstehen das Prinzip der Überwindung der Fahrwiderstände, den Aufbau des Antriebsstranges und die Grundlagen der Fahrdynamik.
Die Studierenden sind in der Lage, das Gesamtsystem sowie die behandelten Fahrzeugkomponenten auszulegen, diese zu berechnen und als spätere Ingenieure in diesem Themenfeld tätig zu sein.

Sachkompetenz
Probleme im Bereich der Fahrzeugantriebe im beruflichen Umfeld lösen sie zielgerichtet. Sie sind in der Lage sich mit Fachvertretern und Laien über Informationen, Ideen, Problemen und Lösungen auszutauschen.

Sozial-ethische Kompetenz
Die Absolventen sind auf eine komplexe, globalisierte Arbeitswelt vorbereitet Die Absolventen finden sich schnell in neuen (Arbeits-)-Situationen zurecht
Die Absolventen haben gelernt, die eigenen Fähigkeiten selbständig auf die sich ständig verändernden Anforderungen anzupassen.
Durch die starke Einbindung in die Praxis verfügen die Studierenden über außergewöhnlich hohes Prozessverständnis.

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 7.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Grundlagen Fahrzeugtechnik

Art Vorlesung
Nr. M+V620
SWS 2.0
Lerninhalt

·         

  • Historie, Statistik (Fahrzeuge, Verkehr, Sicherheit)
  • geometrische Grundgrößen, Schwerpunktbestimmung, Achslasten
  • Fahrwiderstände (Radwiderstand / Aerodynamik / Beschleunigungswiderstand /Steigungswiderstand)
  • Bremsen
  • Grundgrößen der Quer- und Vertikaldynamik, Reifenquer- und vertikaldynamik
  • Lenkung, Radaufhängung, Federung und Dämpfung
  • Kenntnis der prinzipiellen Achsbauarten und Lenksysteme
  • Aktive, passive und integrale Fahrzeugsicherheit

 

 

Literatur
  • Bruhn, D., Danner, D., Endruschat, P. G., u. weitere: Kraftfahrzeugtechnik, 2009, Westermann-Verlag
  • Brand, M., Fischer, R., Gscheidle, T., und weitere: Fachkunde Kraftfahrzeugtechnik, 2019, Europa-Lehrmittel-Verlag
  • Braess, H. H., Seiffert, U., Handbuch Kraftfahrzeugtechnik, 2016, Vieweg Verlag
  • Heißing, B., Ersoy, M., Gies, S., Fahrwerkhandbuch: Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven; 2017, Vieweg Verlag

Fahrzeugantriebe

Art Vorlesung
Nr. M+V621
SWS 4.0
Lerninhalt
  • Antriebskonzepte (Einfluss auf Traktion, Komfort, Gewicht, Verbrauch, Realisierung, Vor- und Nachteile)
  • Auslegung und Beurteilung von Fahrzeugantrieben
  • Verbrennungsmotoren

-          Verbrennungsmotoren Grundlagen

-           Kreisprozesse

-           Motormechanik

-          Kraftstoffe und Abgase

-          Aufladung von Verbrennungsmotoren

  • Grundlagen Fahrzeuggetriebe

-          Aufbau, Eigenschaften verschiedener Getriebekonzepte

  • Elektrische Antriebe

-          Eigenschaften elektrischer Antriebssysteme

-          Modellbildung und Ansteuerung elektrischer Antriebe

-          Anbindung des Elektroantriebs an den Antriebsstrang

 

Literatur

- Beitz, Grote: Dubbel – Taschenbuch für den Maschinenbau, Springer, Berlin
- Grohe: Otto- und Dieselmotoren, Vogle Buchverlag, Würzburg
- Köhler: Verbrennungsmotoren, Vieweg Verlag, Berlin
- Fuest, K., Döring, P.: Elektrische Maschinen und Antriebe, Vieweg Verlag
- Reif, K.: Konventioneller Antriebsstrang und Hybridantriebe, Vieweg und Teubner

Industrielle Mechatronik

Lehrform Vorlesung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 8.0
Modulverantwortlicher

Prof. Dr. rer. nat. Michael Wülker

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Projektierung von Schaltanlagen

Art Vorlesung
Nr. E+I351
SWS 2.0

Projektierung von Schaltschränken

Art Vorlesung
Nr. EMI351
SWS 2.0
Lerninhalt
  • Grundlagen zur Europäischen Normen, Richtlinien und Gesetze
  • Relevante Normen, Richtlinien und Gesetze für die Projektierung von Schaltanlagen
  • Detailbetrachtung der EN60204-1 sowie die Abgrenzung zur EN61439-1
  • Praxisbeispiele zur konkreten Umsetzung der erlernten Vorgaben
  • Einführung in Elektro-CAD ePLAN P8
Literatur
  • Skript zur Vorlesung
  • Leitfaden Sicherer Maschine – In sechs Schritten zur sicheren Maschine, SICK AG 2017
  • Der normgerechte Schalt- und Steuerungsbau – Anwendung der DIN EN 61439, Rittal Gmbh& Co. KG, 2013
  • Das Schaltschrank-Expertenwissen, Rittal Gmbh & Co. KG, 2014
  • Die Schaltschrank- und Prozesskühlung, Rittal Gmbh & Co. KG, 2013

Robotik

Art Vorlesung
Nr. M+V612
SWS 2.0
Lerninhalt

A) Einführung und Überblick
Definition, Robotertypen und Anwendungsbereiche

B) Koordinatensysteme und Bewegungen, Kinematik
Roboterstellung: Koordinatensysteme, Rotationsmatrizen, homogene Matrizen, Euler-Winkel, Denavit-Hartenberg-Konvention
Roboter- und Weltkoordinaten: Vorwärtstransformation, Rückwärtstransformation, kinematische Transformationen, Jacobi-Matrix
Bewegungsbahnen: Punkt-zu-Punkt, Bahnsteuerung, Linear- und Zirkularinterpolation, Überschleifen
Programmierung von Bewegungen: Online (Teach-in) und Offline (textbasiert)

C) Mechanische und elektromechanische Eigenschaften von Robotern
mechanische Elemente, elektromechanische Komponenten, Greifer, Sensoren
dynamisches Verhalten: Berechnung von Kräften und Drehmomenten
Gesamtmodell mit Antrieben, Servoelektronik, Getriebematrizen

D) Steuerung und Regelung von Robotern
Gelenkregelung: dezentrale Kaskadenstruktur, adaptive Gelenkregelung
kartesische Lageregelung, Kraftregelung, hybride Regelung
modellbasierte Regelungskonzepte: zentrale Vorsteuerung, Entkopplung und Linearisierung, robuste Regler
nichtanalytische Regelungsverfahren: Fuzzy-Regler, neuronale Lernverfahren

E) Intelligente Robotersysteme
Bilderfassung, Bildverarbeitung, Entscheidungsfindung
Serviceroboter, Humanoidroboter

Literatur

Weber, W., Industrieroboter: Methoden der Steuerung und Regelung, Hanser, 2009

Craig, J.J., Introduction to Robotics: Mechanics and Control, Reading: Addison-Wesley, 2002

Siciliano, B., Khatib, O., Springer Handbook of Robotics, Springer, 2008

Pneumatik

Art Vorlesung
Nr. M+V633
SWS 2.0
Lerninhalt

A) Grundlagen der Fluidmechanik
Definition, einführende Konstruktions- und Schaltungsbeispiele, Schaltzeichen (DIN ISO 1219), Bernoulligleichung, Kontinuitätsgleichung, Druckverluste, Beschleunigungsverluste, Kompressibilität, Leckverluste, Kraftwirkung strömender Gase (Impulssatz), Kompressible Strömungsmedien (Pneumatik), Druckwellen

B) Bauglieder der Pneumatik
Energieversorgung: Kompressoren und Luftverdichter, Motoren, Zylinder und Schwenkmotoren, Ventile: Bauarten, Betriebsverhalten, Zubehör, Fluidmechanische Kreisläufe

C) Pneumatische Systeme
Projektierung von pneumatischen Systemen, Regelung/Steuerung pneumatischer Systeme, Systemmodelle für pneumatische Systeme, Simulationsprogramme, regelungstechnische Gesichtpunkte, Monitoring und Diagnose

D) Beispiele für Pneumatiksysteme
Lineartriebe, elektropneumatische Antriebe

Literatur

Grollius, H.W., Grundlagen der Pneumatik, Hanser 2009

Crosser, P., Ebel, F., Pneumatik, Grundstufe, Festo Didactic 2002

Prede, G., Scholz, D., Eelktropneumatik, Grundstufe, Festo Didactic 2001

Watter, H., Hydraulic und Pneumatik: Grundlagen und Übungen - Anwendung und Simulation, Vieweg, 2008

Boulton, W., Pneumatic and Hydraulic Systems, Pearson, 1997

Maschinenelemente

Lehrform Vorlesung/Übung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 80 h
Selbststudium / Gruppenarbeit: 160 h
Workload 240 h
ECTS 8.0
Empf. Semester 4
Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Maschinenelemente/Konstruktionslehre

Art Vorlesung/Übung
Nr. M+V608
SWS 4.0
Lerninhalt

A) Einführung in das Methodische Konsturieren (Ideenfindung, Konstruktionsprinzipien, Gestaltungsregeln, Klärung des Begriffs "Funktion" in der Konstruktionslehre)

B) Einführung in die Praktische Festigkeitslehre (Dauerschwingversuch, Wöhlerlinie, Dauerfestigkeitsschaubilder, Theorie des allgemeinen Verspannungszustands, Invarianten des Spannungstensors, VersagenshypothesenFestigkeitsnachweise nach DIN 743)

C) Betrachtung ausgewählter grundlegender Maschinenelememente: Z.B. Achsen, Wellen, Lager, Bewegungsschrauben, Federn. Dabei mit besonderem Blick auf Berechnungsansätze, die für weitere Maschinenelemente grundsätzliche Bedeutung habe (Dimensionierung, Funktionsnachweise, Festigkeitsnachweise)

  • Diskussion allgemeiner und übergreifender Regeln des Funktionsnachweises bei ausgewählten Maschinenelementen
  • Diskussion allgemeiner und übergreifender Regeln des Festigkeitsnachweises bei bei ausgewählten Maschinenelementen
  • Diskussion von abstrakten Modellierungsansätzen für ausgewählte Maschinenelemente für die Verwendung in Mechatronischen Simulationen

 

 

Literatur

Begleitunterlagen der Veranstaltung

Zur Ergänzung empfohlen:

Roloff, Matek, Maschinenelemente, 2003
Niemann, Winter, Höhn, Maschinenelemente, 2005
Labisch, Technisches Zeichnen, Springer Vieweg 2017
DIN 743

 

 

 

Maschinenelemente/Konstruktionslehre - Hausarbeit

Art Übung
Nr. M+V608
SWS 6.0
Lerninhalt

A) Einführung in das Methodische Konsturieren (Ideenfindung, Konstruktionsprinzipien, Gestaltungsregeln, Klärung des Begriffs "Funktion" in der Konstruktionslehre)

B) Einführung in die Praktische Festigkeitslehre (Dauerschwingversuch, Wöhlerlinie, Dauerfestigkeitsschaubilder, Theorie des allgemeinen Verspannungszustands, Invarianten des Spannungstensors, VersagenshypothesenFestigkeitsnachweise nach DIN 743)

C) Betrachtung ausgewählter grundlegender Maschinenelememente: Z.B. Achsen, Wellen, Lager, Bewegungsschrauben, Federn. Dabei mit besonderem Blick auf Berechnungsansätze, die für weitere Maschinenelemente grundsätzliche Bedeutung habe (Dimensionierung, Funktionsnachweise, Festigkeitsnachweise)

  • Diskussion allgemeiner und übergreifender Regeln des Funktionsnachweises bei ausgewählten Maschinenelementen
  • Diskussion allgemeiner und übergreifender Regeln des Festigkeitsnachweises bei bei ausgewählten Maschinenelementen
  • Diskussion von abstrakten Modellierungsansätzen für ausgewählte Maschinenelemente für die Verwendung in Mechatronischen Simulationen

 

 

 

 und Konstruktionsübung.

Literatur

Begleitunterlagen der Veranstaltung

Zur Ergänzung empfohlen:

Roloff, Matek, Maschinenelemente, 2003
Niemann, Winter, Höhn, Maschinenelemente, 2005
Labisch, Technisches Zeichnen, Springer Vieweg 2017
DIN 743

 

Mechatronik

Lehrform Vorlesung
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Grundlagen mechatronischer Systeme

Art Vorlesung
Nr. EMI349
SWS 2.0
Lerninhalt
  • Begriffsbestimmung der Mechatronik
  • Entwicklungsprozess mechatronischer Systeme
    • V-Modell
    • Schnittstellenproblematik
    • Zuverlässigkeit mechatronischer Systeme
  • Bauteile mechatronischer Systeme:
    • Mechanisch
    • Elektrisch
    • Fluidisch / thermodynamisch
  • Modellbildung in der Mechatronik:
    • Theoretische Modellbildung
    • Parameteridentifikation
  • Kinematik mobiler Systeme
  • Sensoren mechatronischer Systeme
    • Eigenschaften von Sensorsystemen
    • Physikalische Effekte
    • Beschleunigungssensoren
    • Drehratensensoren
    • MEMS Sensorik
  • Prozessdatenverabreitung mechatronischer Systeme
    • Signal- und Datenverarbeitung
      • Kleinster Quadrate Schätzer
      • Kartierung
  • Ausgewählte Beispiele mechatronischer Systeme

 

Literatur

Roddeck, W., Einführung in die Mechatronik, Springer-Vieweg, 2012

Heimann, B., Mechatronik: Komponenten - Methoden - Beispiele, München, Wien, Hanser-Verlag, 2006

Siegwart, R., Introduction to Autonomous Mobile Robots, Cambridge, MIT Press, 2011

Simulation mechatronischer Systeme

Art Vorlesung
Nr. EMI350
SWS 2.0
Lerninhalt

Modellbildung

  • Systembegriff
  • Verfahren der Modellbildung
    • Theoretische Modellbildung
    • Allgemeine Systeme
    • Klassifizierung dynamischer Systeme

Vorgehensweise bei der Simulation

  • Numerische Integration
  • Simulationssysteme
    • Matlab/Simulink
    • Gazebo

Ausgewählte Beispiele zur Simulation mechatronischer Systeme

 

 

Literatur

Glöckler, Simulation mechatronischer Systeme, Wiesbaden, Springer, 2014

Scherf, Modellbildung und Simulation dynamischer Systeme: Eine Sammlung von Simulink-Beispielen, Oldenburg, 2009

Regelungstechnik

Lehrform Vorlesung
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 5.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Regelungstechnik II

Art Vorlesung
Nr. EMI253
SWS 2.0
Lerninhalt

 - Analyse des Strecken- und Regelkreisverhaltens mit Hilfe der Pole und Nullstellen von Übertragungsfunktionen
- Algebraische Stabilitätskriterien
- Vereinfachung des Streckenmodells
- Algebraische Reglerentwurfsverfahren für Standardregler
- Strukturelle Maßnahmen wie Kaskadenregelung, Vorsteuerung und
Störgrößenaufschaltung zur Verbesserung des Regelkreisverhaltens

Literatur

Föllinger, O., Regelungstechnik: Einführung in die Methoden und ihre Anwendung, 13. Auflage, Berlin, Offenbach, VDE Verlag, 2013
Lunze, J., Regelungstechnik 1, 10. Auflage, Berlin, Heidelberg, New York, Springer-Verlag, 2014

Labor Regelungstechnik

Art Labor/Studio
Nr. EMI327
SWS 2.0
Lerninhalt
  • Frequenzgangmessung (Bode-Diagramm und Ortskurve; Schwingversuch)
  • Zweipunktregelung
  • Analoge und digitale Regler vom PID-Typ
  • Lösung von regelungstechnischen Problemen mit Modellbildung und Simulation (Matlab/Simulink)
  • Erzeugung von echtzeitfähigem Programm-Code aus einer Computersimulation; Rapid Prototyping
Literatur

Föllinger, O., Regelungstechnik : Einführung in die Methoden und ihre Anwendung, 10. Auflage, Heidelberg, Hüthig Verlag, 2008

Laborumdrucke, Hochschule Offenburg

Schaltungstechnik

Empfohlene Vorkenntnisse

komplettes Grundstudium

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen
  • Begreifen des Verstärkers als Grundfunktion der analogen Signalverarbeitung.
  • Fähigkeit zur Verhaltensmodellierung mittels Ersatzschaltbildern und Signalflußbildern.
  • Beherrschen der Dimensionierung von Transistor- und Operationsverstärkerschaltungen bei gegebenen Anforderungen.
  • Begreifen der einsatzabhängigen Funktion, der Genauigkeits- und Geschwindigkeitsanforderungen von Analog-Digital- und Digital-Analog- Wandlern.
  • Fähigkeit zum Entwurf und zur Umformung und zur Minimisierung kombinatorischer Schaltungen.
  • Verständnis für das Zeitverhalten in digitalen Netzen und Fähigkeit zur Bestimmung des `kritischen Pfads`.
  • Fähigkeit zum Entwurf einfacher synchroner Schaltwerke wie Zähler und Zustandsautomaten mit systematischen Methoden.
  • Erlernen der Grundregeln des Entwurfs digitaler Schaltungen.
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 90 h
Selbststudium / Gruppenarbeit: 90 h
Workload 180 h
ECTS 6.0
Voraussetzungen für die Vergabe von LP

Klausur K90, Laborarbeit

Leistungspunkte Noten

6 Creditpunkte

Modulverantwortlicher

Prof. Dr.-Ing. Elke Mackensen

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Labor Schaltungstechnik

Art Labor
Nr. E+I224
SWS 2.0
Lerninhalt

Das Schaltungstechnik Labor enthält Versuche sowohl für den Bereich der Analogen- wie auch Digitalen Schaltungstechnik. Der Student bearbeitet in Gruppen zu 2 Studenten 6 Versuche aus folgender Auswahl: Kombinatorische Schaltungen: Aufbau Inverter, Stromaufnahme, Übertragungsverhalten, Störabstand, 2-Bit Addierer, Durchlaufzeit, Logikserie CMOS Differenzverstärker: Simulation eines Differenzverstärkers mit dem Programm PSPICE, Gegentakt und Gleichtaktverstärkung, Frequenzgang, Stabilität, Überragungsverhalten. Operationsverstärker: Messung Übertragungskennlinie, Verstärkung, Eingangsoffsetspannung, Frequenzgang des realen Verstärkers für unterschiedliche Verstärkungen, Aufbau eines 2 poligen aktiven Filters mit dem Operationsverstärker und Messung des Übertragungsverhaltens. Programmierbare Logik: Entwurf der kombinatorischen Schaltung eines Vergleichers und der sequentiellen Schaltung eines kaskadierbaren Dezimalzählers bis `99` mit Enable, synchronem Reset und Carry. Programmierung und Funktionsnachweis auf GAL-Logikbausteinen. A/D-Wandler: Vermessung eines D/A-Wandlers auf Linearität und Restfehler. Aufbau eines A/D-Wandlers
nach dem Verfahren der `successive Approximation`. Basisversuche zum Abtasttheorem. Abtastung eines Signals. Phasenregelkreis: Aufbau eines PLL mit unterschiedlichen Phasendetektoren. Untersuchung des Verhaltens im Zeit- wie im Frequenzbereich. Folgeverhalten, Einrastverhalten, Stabilität. Dimensionierung der Regelparameter. Aufbau eines PLL als Synthesizer. SMD- Technologie: Aufbau einer kleinen Schaltung im SMD-Labor mit SMD-Bausteinen an einem Vakuum- Bestückungsplatz. Reflow- Lötvorgang, Qualitätssicherung unter dem Stereo-Mikroskop, Inbetriebnahme. Der Versuch vermittelt den kompletten SMD- Fertigungsvorgang für moderne Elektronik. FPGA- Entwurf eines Frequenzzählers: Auf einem Logikentwurfssystem für FPGAs (ALTERA-MAX II ) wird die Schaltung eines Frequenzzählers ergänzt und in wesentlichen Komponenten digital simuliert. Das Gesamtsystem wird in einen FPGA gebrannt und in Funktion demonstriert. ECL-Technik: Die Besonderheiten der Emitter Coupled Logic werden untersucht. Messtechnik mit Leitungsabschluss, Logikschaltungen, ECL- Zähler bis 150 MHz. Pegel und Störabstände. Impulsmesstechnik. Umgang mit einem hochwertigen Samplingoszillographen.

 

Literatur

Digitale Schaltungstechnik

Art Vorlesung
Nr. EMI316
SWS 2.0
Lerninhalt

- Grundlagen der Logik, logische Basisfunktionen, Normalformen.
- Kombinatorische Netze, Schaltnetze, statische Logik.
- Digitale Basisschaltungen, TTL, CMOS, innerer Aufbau, Störabstände.
- Minimisierung logischer Netze mit graphischen und rechnerischen Verfahren.
- Isomorphe und nicht- isomorphe Netze.
- Aritmetische kombinatorische Schaltungen (Addierer, Subtrahierer, Multiplizierer).
- Zeitverhalten, kritischer Pfad, Treiberfähigkeit und Belastung.
- Rückkopplung bei Schaltnetzen, Stabilität, Oszillationen.
- Speicherelemente, Flipflops, Register und ihre Behandlung und Anwendung.
- Grundelemente von Zustandsautomaten und ihr systematischer Entwurf.
- Zustandsdiagramm.
- Moore-Automat, Mealey- Automat, sequentielle Schaltwerke

 

Literatur

Jansen, D., Handbuch der Electronic Design Automation, München, Hanser Verlag, 2000

Analoge Schaltungstechnik

Art Vorlesung
Nr. EMI315
SWS 2.0
Lerninhalt

- Verstärkerentwurf: Ideale und reale gesteuerte Quellen zur Modellierung des Verstärkermechanismus`
- Rückgekoppelte Verstärker: Signalflussbild, Schaltung, mathematische Beschreibung
- Differenzverstärker, Operationsverstärker, Fehlerminderung durch Gegenkopplung, idealer - Operationsverstärker,
virtuell- Null- Verfahren, typische Kennwerte kommerzieller Operationsverstärker.
- Schaltungsbeispiele mit Operationsverstärkern: Verstärker mit unterschiedlichen Eigenschaften, Filter,
Messschaltungen; Eigenschaften, Grenzen und Dimensionierungen.
- Stromquellen- und Stromspiegelschaltungen.
- Analog/Digital- und Digital/Analogwandler: Prinzipieller Aufbau in Abhängigkeit von Genauigkeit und
Geschwindigkeit; Verstehen der Spezifikationen, Schnittstellen und Zahlenformate; Kosten- und leistungsgerechte
Bausteinauswahl.

 

Literatur

Tietze U., Schenk C., Gamm E., Halbleiter-Schaltungstechnik, 15. Auflage, Berlin, Heidelberg, Springer Vieweg, 2016

Schwerpunkt Fahrzeugmechatronik

Lehrform Wissenschaftl. Arbeit/Sem
Dauer 1
SWS 22.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 25.0
Haeufigkeit jedes Semester

Schwerpunkt Industrielle Mechatronik

Lehrform Wissenschaftl. Arbeit/Sem
Dauer 1
SWS 22.0
Aufwand
Lehrveranstaltung 30 h
Selbststudium / Gruppenarbeit: 390 h
Workload 420 h
ECTS 25.0
Haeufigkeit jedes Semester

Sensorik

Lehrform Vorlesung/Labor
Lernziele / Kompetenzen

Der Teilnehmer gewinnt die Fähigkeit zum gezielten Einsatz von Sensoren und geeigneten Signalverarbeitungsverfahren in der Messtechnik, Automatisierungstechnik und in der Regelungstechnik.

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Modulverantwortlicher

Prof. Dr.-Ing. Stefan Hensel

Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Labor Mess- und Sensortechnik

Art Labor/Studio
Nr. EMI261
SWS 2.0
Lerninhalt

Das Labor verknüpft die in der Vorlesung erarbeiteten Messmethoden und vorgestellten Sensoren mit sechs Versuchen

  • Interferometrische Längenmesstechnik
  • Korrelationsmesstechnik: Störunterdrückung, Laufzeitmessungen
  • Dehungsmessstreifen: Dehnung, Biegung, Torsion, Wägezelle
  • Rechnergestützte Messdatenerfassung und -verarbeitung: Induktive und potentiometrische Wegmessung
  • Wegmessung: Linear Variabler Differenzialtransformator (LVDT), phasenempfindliche Demodulation (Lock-In)
  • Druckmesstechnik: Piezoresistive Druckmessung, Temperaturkompensation, Füllstandsmessung, barometrische Messungen

 

Mess- und Sensortechnik

Art Vorlesung
Nr. EMI260
SWS 2.0
Lerninhalt

Definition und Eigenschaften eines Sensors: einfach, integriert, intelligent ("smart sensor")

Überblick von Messgrößen und möglichen Messprinzipien:

  • Drucksensoren: Piezoresistiv, kapazitiv, Temperaturkompensationmethoden
  • Längen- und Wegmessung:
    • Induktiv: Tauchanker, LVDT, Phasensynchrone Demodulation
    • Kapazitiv: Schichtdickenmessung
    • Optisch: Phasenbezogene Entfernungsmessung, Triangulation
    • Laufzeitverfahren: Ultraschallsensoren und RADAR
  • Kraftmessung:
    • Dehnungsmessstreifen und Auswerteschaltungen
  • Korrelationsmesstechnik: Kreuzkorrelation, Störunterdrückung, Laufzeitkorrelation

Messsignalverarbeitung in der Messkette:

  • Normalverteilte Messabweichungen
  • Kleinste Quadrate Schätzung
  • Sensordatenfusion mit dem gewichteten kleinste Quadrate Schätzer
Literatur

Tränkler, H., Sensortechnik Handbuch für Praxis und Wissenschaft, 2. Auflage, Berlin, Heidelberg, Springer, 2014 

Hering, E., Schönfelder G., Sensoren in Wissenschaft und Technik, Wiesbaden, Vieweg+Teubner, 2012 

Schrüfer, E., Elektrische Messtechnik, München, Hanser, 2014

 

Signale, Systeme und Regelkreise

Lehrform Vorlesung
Dauer 1
SWS 8.0
Aufwand
Lehrveranstaltung 120 h
Selbststudium / Gruppenarbeit: 120 h
Workload 240 h
ECTS 8.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Regelungstechnik I

Art Vorlesung
Nr. EMI228
SWS 4.0
Lerninhalt

Die Vorlesung gibt eine Einführung in die Regelungstechnik und vermittelt die grundlegenden Konzepte zur Analyse von Regelkreisen und dem Entwurf von Reglern für zeitkontinuierliche, lineare Systeme mit einem Eingang und einem Ausgang (SISO-Systeme). Behandelt werden u.a. folgende Inhalte:

  • Modellierung dynamischer Systeme
    Beschreibung mechatronischer Systeme mittels Differentialgleichungen; Linearisierung nichtlinearer Differentialgleichungen; Simulation eines Systems mittels MATLAB (System Control Toolbox) und MATLAB-Simulink
  • Mathematische Beschreibung und Verhalten von LTI-Systemen
    - Definition und Eigenschaften von LTI-SISO-Systeme
    - Beschreibung und Verhalten im Zeitbereich
      Lösen der Differentialgleichung, Sprungantwort, Impulsantwort, Faltung
    - Beschreibung und Verhalten im Frequenzbereich 
      Anwendung der Laplace-Transformation, Übertragungsfunktion, Frequenzgang, Bode-Diagramm, Ortskurve, Blockschaltbilder
    - grundlegende Übertragungsglieder (P-Glied, I-Glied, PT1, D-Glied, DT1-Glied, PT2-Glied, Totzeit-Glied)
    - Stabilität von Systemen
  • Der Regelkreis
    - Der Standardregelkreis
    - Ziele eine Regelung, Reglerentwurfsaufgabe und Anforderungen
    - Stabilität von Regelkreisen
    - stationäres Verhalten von Regelkreisen
    - Standard-Regler vom Typ PID
    - Reglerauslegung im Zeitbereich: (Methoden von Ziegler-Nichols, Methode v. Chien, Hrones und Reswick
    - Reglerauslegung im Frequenzbereich: vereinfachtes Betragsoptimum (Zeitkonstantenkompensation),  Frequenzkennlinienverfahren
Literatur

O. Föllinger, Regelungstechnik, 12. Auflage, Berlin, VDE Verlag, 2016

J. Lunze, Regelungstechnik I, 11. Auflage, Springer Vieweg, 2016

G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, Pearson, 7. Auflage, 2014

 

Signale und Systeme

Art Vorlesung
Nr. EMI227
SWS 4.0
Lerninhalt

1. Fourier-Transformation
- Orthogonale und orthonormale Funktionen, endliche und unendliche Fourier-Reihe
- Bestimmung der Fourier-Koeffizienten: Minimierung der Norm des Fehlersignals
- Gibbs'sches Phänomen; Amplituden- und Phasenspektrum
- Übergang zur Fourier-Transformation: Amplitudendichtespektrum
- Einführung der Distribution Dirac- Impuls
- Linearität, Zeitverschiebung, Ähnlichkeitssatz, Nullwertsätze, Parseval'sche Gleichung
- Faltung zweier Zeitfunktionen, graphische Veranschaulichung
- Systembeschreibung: Impulsantwort, Sprungantwort, Faltungsintegral, komplexer Frequenzgang

2. Laplace-Transformation
- Einführung in die Laplace-Transformation; Eigenschaften und Rechenregeln
- Rechnen im Bildbereich;  Hin- und Rücktransformation
- Anwendung der LP-Transformation auf gewöhnliche Differentialgleichungen mit konstanten Koeffizienten
- Rechnen mit Delta- und Sprungfunktionen
- Übertragungsfunktionen und Frequenzgänge linearer kontinuierlicher Übertragungssysteme

3. Z-Transformation
- Lineare Abtastsysteme;  Definition und Begriffe
- Rechenregeln der Z-Transformation; Hin- und Rücktransformationen
- Lösung der Differenzengleichungen

 

Literatur

Föllinger O., Laplace- und Fourier-Transformation, 10. Auflage, Berlin, Offenbach, VDE-Verlag, 2011

Werner, M., Signale und Systeme, Lehr- und Arbeitsbuch mit MATLAB-Übungen und Lösungen, 3. Auflage, Wiesbaden, Vieweg+Teubner, 2008

Doetsch G., Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 6. Auflage, München, Wien, Oldenbourg Verlag, 1989

 

Technische Mechanik II

Empfohlene Vorkenntnisse

Technische Mechanik I

Lehrform Vorlesung/Übung
Lernziele / Kompetenzen

Die Studierenden können

  • kritische Stellen bezüglich des Versagens von mechanischen Strukturen eingrenzen
  • Normal- und Schubspannungen in (ebenen) mechanischen Strukturen berechnen
  • Zusammenhänge zwischen Spannungen und Dehnungen herstellen und den Anwendungsbereich für linearelastisches Verhalten abstecken
  • die für verschiedene Belastungsfälle (Zug, Druck, Biegung, Torsion) begrenzenden Spannungen identifizieren
  • den Einfluss der Querschnittsform und des Kraftangriffs bei der Biegung beurteilen
  • statische und dynamische Belastungsfälle unterscheiden und die begrenzenden Materialeigenschaften benennen
  • komplexe Belastungssituation als Überlagerung einfacher Belastungsfälle zusammensetzen
  • Vergleichsspannungen bei komplexen Belastungssituationen ermitteln

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Voraussetzungen für die Vergabe von LP

Klausur K90

Leistungspunkte Noten

5 Creditpunkte

Modulverantwortlicher

Prof. Dr. rer. nat. Michael Wülker

Haeufigkeit jedes Jahr (WS)
Verwendbarkeit

Bachelor MK, Hauptstudium
Bachelor MK-plus, Hauptstudium

Veranstaltungen

Technische Mechanik II

Art Vorlesung
Nr. M+V606
SWS 4.0
Lerninhalt

Festigkeitsbetrachtungen erlauben es, Gefahrenpotentiale für das Versagen mechanischer Strukturen abzuschätzen, und bilden somit die Grundlage für die Dimensionierung von mechanischen Bauteilen und Strukturen wie Roboterstrukturen, Trägern, Wellen etc. Weiterhin ist für die Auslegung von Toleranzen von Interesse, wie sich mechanische Strukturen unter Einwirkung zulässiger Kräfte verformen und welche Spannungen bei Zwangsverformungen entstehen.


A) Im Rahmen der linearen Elastizitätstheorie werden der ein- und mehrachsige Normalspannungszustand sowie die Hookeschen Gesetze für Normal- und Schubspannungsbeanspruchung behandelt.

B) Für biegebeanspruchte Bauteile wird unter Berücksichtigung der Querschnittsform und Belastungseinleitung die Methode zur Berechnung der Biegespannungen erläutert (Biegespannungsfunktion, Flächenträgheitsmomente, Hauptachsen und Hauptträgheitsmomente, gerade und schiefe Biegung). Die Ermittlung der elastischen Verformung mittels Integrationsmethode, Satz von Castigliano und Superpositionsmethode stellt einen weiteren wesentlichen Bestandteil der Behandlung biegebeanspruchter Bauteile dar.

C) Die Ausführung zur Schubbeanspruchung beinhaltet unter anderem den Schubspannungsverlauf bei Querkraftschub sowie die Definition des Schubmittelpunktes.

D) Bei der Behandlung der Torsionsbeanspruchung wird auf die Berechnung der Torsionsschubspannung und die Verformung von Voll- und Hohlquerschnitten eingegangen.

E) Erläutert werden die wichtigsten Vergleichsspannungshypothesen zur Überlagerung von Normal- und Schubspannungen, die Begriffe der Zeit- und Dauerfestigkeit sowie der Kerbwirkung. Behandelt wird die Berechnung statisch überbestimmter Systeme nach verschiedenen Methoden.

F) Stabilitätsprobleme und deren analytische Behandlung werden am Beispiel der Knickung druckbeanspruchter Stäbe (elastische und plastische Knickung) dargelegt.

Literatur
  • Technische Mechanik. Band 2: Elastostatik, Hydrostatik Gross D., Hauger W., Schell W. Springer 2011
  • Technische Mechanik, Band 2: Festigkeitslehre, Hibbeler RC, Pearson Studium 2006
  • Formeln und Aufgaben zur Technischen Mechanik 2: Elastostatik, Hydrostatik, Gross D., Ehlers W., Schröder J., Springer 2011
  • Technische Mechanik, Band 2: Festigkeitslehre, Assmann B., Oldenbourg 2000
  • Taschenbuch für den Maschinenbau, Dubbel H.; Beitz W., Küttner K.-H. (Hrsg.), Springer 2011

Technische Mechanik III

Lehrform Vorlesung
Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Technische Mechanik III

Art Vorlesung
Nr. M+V607
SWS 4.0
Lerninhalt

Die Vorlesung beinhaltet Kinematik und Kinetik. In der Kinematik (Bewegungslehre) wird die Abhängigkeit zwischen den Größen Weg, Geschwindigkeit, Beschleunigung und Zeit bei der Bewegung von Massenpunkten und starren Körpern ohne Berücksichtigung der die Bewegung verursachenden Kräfte bzw. Momente untersucht.


Für ein- und mehrdimensionale Bewegungsvorgänge mit unterschiedlichem Beschleunigungs- bzw. Geschwindigkeitsverhalten werden die entsprechenden Gesetzmäßigkeiten hergeleitet.
Die allgemeine Bewegung starrer Körper wird anschaulich zurückgeführt auf translatorische und rotatorische Phasen; erörtert werden Begriffe wie momentaner Drehpol und Beschleunigungspol. Die Kinematik schließt ab mit der grafischen und analytischen Behandlung von Relativbewegungen.
In der Kinetik werden das d`Alembertsche Prinzip, der Arbeitssatz, der Energieerhaltungssatz sowie der Impuls- und Drehimpulssatz für Massenpunkte und starre Körper behandelt und zur Lösung unterschiedlicher Aufgabenstellungen (z.B. bei Wurf, Rotationsbewegung und Stoßvorgänge) herangezogen. Die Ausführungen zur Kinetik starrer Körper beinhalten weiterhin die Berechnung der Massenträgheitsmomente und die Gesetze der Kreiselbewegung bei geführter Achse.
Im dritten Komplex werden freie und erzwungene Schwingungen mit einem Freiheitsgrad (ungedämpft und gedämpft) sowie ungedämpfte Mehrmassensysteme (z.B. Ermittlung kritischer Drehzahlen) untersucht. Besonderes Gewicht wird auf die Ermittlung von Eigenschwingungsformen und -frequenzen gelegt.


Ausgewählte Anwendungsbeispiele und wöchentliche Übungen sind wichtiger Bestandteil der Lehrveranstaltung.

Literatur

Hibbeler, R.C., Technische Mechanik, Band 3: Dynamik, Pearson Studium 2006
Gross, D., Hauger, W., Schell, W., Schröder, J., Technische Mechanik, Band 3: Kinetik, Springer, 2008
Assmann, B., Technische Mechanik, Band 3: Kinematik und Kinetik, Oldenbourg, 2010
Dubbel, H., Beitz, W., Küttner, K.-H., Taschenbuch für den Maschinenbau, Springer, 2007

Thermodynamik

Lehrform Vorlesung
Lernziele / Kompetenzen

Den Studierenden werden die Grundlagen für die Entwicklung hydraulischer  Antriebe vermittelt. Sie sind in der Lage, die Funktion von Schaltungen zu erfassen, einfachere Schaltungen selbst zu entwickeln und zu dimensionieren.

Die Studierenden erhalten einen einführenden Überblick in die Grundlagen und Konzepte der Strömungsmechanik und der Thermodynamik mit Anwendungen für die Ingenieurwissenschaften. Die Studierenden erhalten die methodische und fachliche Qualifikationen zur thermodynamischen und strömungstechnischen Analyse technischer Systeme.

Die Studierenden sind in der Lage typische strömungsmechanische und thermodynamische Aufgabenstellungen zu analysieren und erlernte Methoden für deren Lösung anzuwenden.

Dazu beherrschen sie verschiedene Methoden auf unterschiedlichen Abstraktionsebenen. Sie sind in der Lage Fehler abzuschätzen.

Den Studierenden werden die Grundlagen für die Entwicklung hydraulischer  Antriebe vermittelt. Sie sind in der Lage, die Funktion von Schaltungen zu erfassen, einfachere Schaltungen selbst zu entwickeln und zu dimensionieren.

 

Fachkompetenz:

  • beherrschen die Fachsprache der Thermodynamik / Strömungslehre, Hydraulik
  • können Hydraulikpläne lesen und erstellen
  • können die physikalischen Vorgänge der Hydraulik mathematisch beschreiben
  • können Hydrauliksysteme grundlegend dimensionieren
  • können geeignete Vereinfachungen für die Analyse von strömungsmechanischen und thermodynamischen Aufgabenstellungen treffen und die grundlegenden Gesetzmäßigkeiten anwenden,
  • können die Berechnung bei einfachem Stoffverhalten durchführen

Methodenkompetenz:

  • Lösungen für Teilaufgaben zu einer Gesamtlösung zusammenführen
  • Erkennen von Anwendungsgrenzen
  • komplexe Problemstellungen analysieren
  • Lösungen für Teilaufgaben zu einer Gesamtlösung zusammenführen

Sozial- und Selbstkompetenz:

  • Selbstorganisiertes Lernen
  • Abstraktion, logische Vorgehensweise

 

Dauer 1
SWS 4.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 5.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Grundlagen der Strömungslehre und Thermodynamik

Art Vorlesung
Nr. M+V5004
SWS 2.0
Lerninhalt

Grundlagen der Thermodynamik

  • Größen und Einheitensysteme
  • thermische Zustandsgrößen
  • thermische Zustandsgleichung
  • das reale Verhalten der Stoffe, Mengenmaße
  • thermodynamisches System

Erster Hauptsatz

  • Energieerhaltung
  • Arbeit am geschlossenen System
  • innere Energie, Wärme
  • Arbeit am offenen System und Enthalpie
  • Formulierung des ersten Hauptsatzes
  • kalorische Zustandsgleichungen

Zweiter Hauptsatz

  • Definition der Entropie
  • Formulierung des zweiten Hauptsatzes
  • T,S-Diagramm

Grundlagen der Strömungslehre

  • Eigenschaften von Fluiden, Viskosität
  • Hydrostatik
  • Inkompressible Strömungen, Kontinuitätsgleichung, Energiegleichung, Impulssatz
  • Laminare, turbulente Strömungen
Literatur

Bohl, W.: Technische Strömungslehre, Vogel Buchverlag
Cerbe, G.; Hoffmann, H.-J.: Einführung in die Thermodynamik, Carl Hanser Verlag

Hydraulik

Art Vorlesung/Labor
Nr. M+V5005
SWS 2.0
Lerninhalt
  • Hydrauliksymbole
  • Physikalische Grundlagen
  • Hydraulikfluide
  • Hydraulikkomponenten (Hydraulikzylinder, Pumpen, Motore, Ventile)
  • Schaltungsaufbau und Steuerungen Aufbau und Wirkungsweise wichtiger Funktionselemente
  • Aufbau von Hydrauliksystemen
  • Berechnung von Hydrauliksystemen

 

Literatur

Hans Jürgen Matthies, Karl Theodor Renius: Einführung in die Ölhydraulik. Teubner Verlag

Horst-W. Grollius: Grundlagen der Hydraulik. Hanser Verlag

Vertiefung Elektrotechnik

Lehrform Vorlesung
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Systemintegration

Art Vorlesung
Nr. E+I352
SWS 2.0

Wahlpflichtfächer Elektrotechnik

Art Vorlesung
Nr. E+I338
SWS 4.0
Lerninhalt

s.Liste

Literatur

wird jeweils von den Dozenten des Wahlmoduls angegeben

Vertiefung Elektrotechnik

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden erhalten einen einführenden Überblick in die Grundlagen und Konzepte der Fahrzeugelektronik. Die Studierenden besitzen Detailwissen auf den behandelten Gebieten der Fahrzeugelektronik.

 

Nach erfolgreichem Abschluss sind die Studierenden in der Lage:

-          die elementaren elektrischen Bordnetzkomponenten Zündanlage, Starter und Lichtmaschine zu erklären und zu beurteilen

-          elektrische Anforderungen an Fahrzeuge zu beschreiben und zu analysieren

-          elektrische Fahrzeug-Bordnetze, Informationsübertragungssysteme und die Einbindung von Mikrocontrollern in Fahrzeugen zu verstehen, entwerfen und die zugehörigen Strukturen einer Analyse zu unterziehen sowie zu prüfen.

-          Anforderungen und Eigenschaften der Komfortelektronik im Fahrzeug zu beschreiben und zu analysieren

 

 

Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Haeufigkeit jedes Jahr (WS)
Veranstaltungen

Fahrzeugelektronik

Art Vorlesung
Nr. M+V619
SWS 2.0
Lerninhalt
  • Aufbau und Funktion des elektrischen Bordnetzkomponenten, Zündanlage, Starter und Lichtmaschine
  • Gebräuchliche Fahrzeug-Datenbusse: CAN, LIN, MOST, FlexRay
  • Bordnetzstrukturen in Fahrzeugen: Aufbau, Randbedingungen, Entwurf, Ausführung
  • Komfortelektronik.

 

Literatur

Bosch: Fahrzeugelektrik u. Fahrzeugelektronik , Vieweg / Teubner

Wallentowitz/Reif: Handbuch Kraftfahrzeugelektronik, Vieweg / Teubner

W. Zimmermann: Bussysteme in der Fahrzeugtechnik: Protokolle und Standards , Vieweg / Teubner

Wahlpflichtfächer Elektrotechnik

Art Vorlesung
Nr. E+I338
SWS 4.0
Lerninhalt

s.Liste

Literatur

wird jeweils von den Dozenten des Wahlmoduls angegeben

Vertiefung Maschinenbau

Lehrform Vorlesung/Labor
Dauer 1
SWS 6.0
Aufwand
Lehrveranstaltung 60 h
Selbststudium / Gruppenarbeit: 90 h
Workload 150 h
ECTS 6.0
Haeufigkeit jedes Jahr (SS)
Veranstaltungen

Wahlpflichtfächer Maschinenbau

Art Vorlesung
Nr. M+V615
SWS 2.0
Lerninhalt

Bisher wurden regelmäßig CAD/CAE und Schweißtechnik mit Labor angeboten.

Lerninhalt bei der Wahl von CAD/CAE:
In diesem Modulbaustein soll das sinnvolle Bedienen moderner Systeme erlernt werden. Neben fortgeschrittenen Bedienfunktionen, parametrischer Konstruktion und Konstruktionsänderungen in einer vorhandenen Baugruppe sollen FEM- und MKS-Berechnungen an Einzelteilen und Baugruppen direkt aus dem CAD erlernt werden. Dabei sollen Festigkeits- und Wärmeleitungseigenschaften der Werkstoffe berücksichtigt werden.

Lerninhalte bei der Wahl von Schweißtechnik mit Labor:
Die Studierenden sollen in der Lage sein, unter Berücksichtigung der Konstruktions- und Werkstoffvorgaben die einzelnen Schweißverfahren und thermischen Trennverfahren kritisch zu beurteilen und anzuwenden. Um dieses Wissen zu erwerben, ist die Arbeit in kleinen Teams innerhalb des Schweißlabors hilfreich.

Literatur

Wird jeweils von den Dozenten des Wahlmoduls angegeben oder kann dem entsprechenden Modulhandbuch entnommen werden.

Grundlagen Fertigungsverfahren

Art Vorlesung
Nr. M+V611
SWS 2.0
Lerninhalt

Grundlagen der Zerspanung mit geometrisch definierter Schneide
Kinematik der Zerspanung
Spanungsgrößen, Spanbildungsvorgang, Spanarten und Spanformen
Mechanische, thermische und chemische Beanspruchung beim Spanen
Schneidstoffe, Werkzeugverschleiss,Kühlschmierstoffe
Zerspanbarkeit und Gefüge bei Eisenwerkstoffen
Zerspanbarkeit von Stählen, Eisengusswerkstoffen und Aluminiumlegierungen

Drehen:
Drehverfahren, Drehwerkzeuge
Oberfläche beim Drehen, Werkstückspannelemente, Technologie beim Drehen, Kraft- und Leistungsermittlung, Ermittlung der Zeiten und Wege, Fehler beim Drehen und deren Behebung
Bohren, Senken, Reiben:
Bohrverfahren, Zerspanprozess Bohren am Beispiel eines Wendelbohrers, Bohrwerkzeuge, Bohrerspannelemente, Technologie beim Bohren, Kraft- und Leistungsermittlung, Wege und Zeiten, Fehler beim Bohren, Senken, Reiben, Gewindebohren

Fräsen:
Fräsverfahren, Walzenfräsen/Umfangsfräsen, Stirnfräsen, Drehfräsen, Gewindefräsbohren, Werkzeugspannelemente, Technologie beim Fräsen, Fehler beim Fräsen.
Weitere spanende Fertigungsverfahren.

Literatur

Blume, F., Einführung in die Fertigungstechnik, VEB, 1990

Fritz/Schulze, Fertigungstechnik, VDI, 1995

König, W., Fertigungsverfahren Bd.1,2, VDI, 1990

Spur, G, Stöferle, T., Handbuch der Fertigungstechnik, Bd. 3/2 Spanen, Carl Hanser, 1980

Tschätsch, H., Handbuch der Spanenden Formgebung, Hoppenstedt, 1991

Schönherr, H., Spanende Fertigung, Oldenbourg, 2002

Schulz, H., Vorlesungsskipt Fertigung und Werkzeugmaschinen, 2000

Vieregge, G., Zerspanung der Eisenwerkstoffe, Bd. 16, Stahleisen, 1970

 Zurück