Umwelttechnologie

Herstellungswege für moderne Produkte mit dem Fokus auf Nachhaltigkeit hinsichtlich Ressourcen, Energie und Recyclebarkeit entwickeln.

Modulhandbuch

 Zurück 

Strömungslehre

Empfohlene Vorkenntnisse

Gute Kenntnisse der Mathematik und Physik der vorangegangenen Studiensemester. Es wird empfohlen, die Module "Mathematik" und "Physik" erfolgreich abgeschlossen zu haben.

Lehrform Vorlesung
Lernziele / Kompetenzen

Die Studierenden sind in der Lage, die Kraftwirkungen ruhender Fluide zu berechnen. Die eindimensionalen Strömungsprobleme können im Rahmen der Stromfadentheorie mit der Bernoulli-Gleichung gelöst werden. Die Geschwindigkeits- und Druckänderungen im Schwerefeld sind durch Kombination von Hydrostatik, Kontinuitäts- und Bernoulli-Gleichung zu lösen.

Die Druckverluste beim Durchströmen von Leitungen, Kanälen, Maschinen und ganzen Anlagen können analysiert und berechnet werden.

Bei der Umströmung von Körpern wie z. Bsp.: Kraftfahrzeuge, Flugzeuge und Gebäude können die Widerstandskräfte analysiert und berechnet werden.

Das Verständnis für das Verhalten kompressibler Strömungsvorgänge bei Unter- und Überschallströmungen wird erreicht.

Dauer 2
SWS 6.0
Aufwand
Lehrveranstaltung 90
Selbststudium / Gruppenarbeit: 120
Workload 210
ECTS 7.0
Voraussetzungen für die Vergabe von LP

Technische Strömungslehre I und II: Klausurarbeit, 90 Min.

Technisches Englisch: Referat

Modulnote entspricht der Klausurnote.

Modulverantwortlicher

Professor Dr.-Ing. Andreas Schneider

Empf. Semester 3. und 4. Semester
Haeufigkeit jedes 2. Semester
Verwendbarkeit

Bachelor UT - Hauptstudium

Veranstaltungen

Technische Strömungslehre I

Art Vorlesung
Nr. M+V1614
SWS 2.0
Lerninhalt
  • Grundlagen
    Eigenschaften von Fluiden, Molekularer Aufbau, Stoffdaten, Newtonsche und
    nicht-newtonsche Medien
  • Reibungsfreie Strömungen
    Stromfadentheorie, Bernoulli-Gleichung, Wirbelströmungen, Druckbegriffe und
    deren Messung, Ausströmen aus Behältern, ebene Strömungen,
    Potentialströmungen und Tragflügeltheorie
  • Reibungsbehaftete Strömungen
    Reibungseinfluss, Kennzahlen, laminare und turbulente Strömungen,
    Navier-Stokessche Gleichungen, Druckabfall in durchströmten Leitungen,
    Impulssatz, Grenzschichttheorie
  • Druckverlust und Strömungswiderstand
    Energiegleichung, Druckverlust in durchströmten Bauteilen, Krümmer, Düsen,
    Diffusoren, Widerstand umströmter Körper, Fahrzeuge, Tragflügel, Gebäude 
Literatur
  • Y. A. Cengel, J.M. Cimbala (2017): Fluid Mechanics. McGraw-Hill
  • F. M. White (2016): Fluid Mechanics. McGraw-Hill
  • H. Oertel: Introduction to Fluid Mechanics. Universitätsverlag Karlsruhe
  • Weitere Literatur wird in der Veranstaltung bekanntgegeben

Technische Strömungslehre II

Art Vorlesung
Nr. M+V1615
SWS 2.0
Lerninhalt
  • Hydro-und Aerostatik
    Druckverteilung im Schwere- und Zentrifugalfeld, Kraftwirkungen auf Behälterwände, Archimedischer Auftrieb
  • Gasdynamik
    Strömungen kompressibler Medien, Laval-Düse, senkrechter Verdichtungsstoß
Literatur
  • Y. A. Cengel, J.M. Cimbala (2017): Fluid Mechanics. McGraw-Hill
  • F. M. White (2016): Fluid Mechanics. McGraw-Hill
  • H. Oertel: Introduction to Fluid Mechanics. Universitätsverlag Karlsruhe
  • Weitere Literatur wird in der Veranstaltung bekanntgegeben

Technisches Englisch

Art Vorlesung
Nr. M+V1609
SWS 2.0
Lerninhalt

The course will focus on everyda technical English used in industries, particulary from this region, and will concern describing technical functions, materials, parts, problems, etc. as well as any specific themes requested by the class.

Literatur

Materials and resources will be provided during the course.

 Zurück